I am using pandas 0.17.0 and have a df similar to this one:
df.head()
Out[339]:
A B C
DATE_TIME
2016-10-08 13:57:00 in 5.61 1
2016-10-08 14:02:00 in 8.05 1
2016-10-08 14:07:00 in 7.92 0
2016-10-08 14:12:00 in 7.98 0
2016-10-08 14:17:00 out 8.18 0
df.tail()
Out[340]:
A B C
DATE_TIME
2016-11-08 13:42:00 in 8.00 0
2016-11-08 13:47:00 in 7.99 0
2016-11-08 13:52:00 out 7.97 0
2016-11-08 13:57:00 in 8.14 1
2016-11-08 14:02:00 in 8.16 1
with following dtypes:
print (df.dtypes)
A object
B float64
C int64
dtype: object
When I reindex my df to minute intervals all the columns int64 change to float64.
index = pd.date_range(df.index[0], df.index[-1], freq="min")
df2 = df.reindex(index)
print (df2.dtypes)
A object
B float64
C float64
dtype: object
Also, if I try to resample
df3 = df.resample('Min')
The int64 will turn into a float64 and for some reason I loose my object column.
print (df3.dtypes)
print (df3.dtypes)
B float64
C float64
dtype: object
Since I want to interpolate the columns differently based on this distinction in an subsequent step (after concatenating the df with another df), I need them to maintain their original dtype. My real df has far more columns of each type, for which reason I am looking for a solution that does not depend on calling the columns individually by their label.
Is there a way to maintain their dtype throughout the reindexing? Or is there a way how I can assign them their dtype afterwards (they are the only columns consisiting only of integers besides NANs)?
Can anybody help me?
It is impossible, because if you get at least one NaN value in some column, int is converted to float.
index = pd.date_range(df.index[0], df.index[-1], freq="min")
df2 = df.reindex(index)
print (df2)
A B C
2016-10-08 13:57:00 in 5.61 1.0
2016-10-08 13:58:00 NaN NaN NaN
2016-10-08 13:59:00 NaN NaN NaN
2016-10-08 14:00:00 NaN NaN NaN
2016-10-08 14:01:00 NaN NaN NaN
2016-10-08 14:02:00 in 8.05 1.0
2016-10-08 14:03:00 NaN NaN NaN
2016-10-08 14:04:00 NaN NaN NaN
2016-10-08 14:05:00 NaN NaN NaN
2016-10-08 14:06:00 NaN NaN NaN
2016-10-08 14:07:00 in 7.92 0.0
2016-10-08 14:08:00 NaN NaN NaN
2016-10-08 14:09:00 NaN NaN NaN
2016-10-08 14:10:00 NaN NaN NaN
2016-10-08 14:11:00 NaN NaN NaN
2016-10-08 14:12:00 in 7.98 0.0
2016-10-08 14:13:00 NaN NaN NaN
2016-10-08 14:14:00 NaN NaN NaN
2016-10-08 14:15:00 NaN NaN NaN
2016-10-08 14:16:00 NaN NaN NaN
2016-10-08 14:17:00 out 8.18 0.0
print (df2.dtypes)
A object
B float64
C float64
dtype: object
But if use parameter fill_value in reindex, dtypes are not changed:
index = pd.date_range(df.index[0], df.index[-1], freq="min")
df2 = df.reindex(index, fill_value=0)
print (df2)
A B C
2016-10-08 13:57:00 in 5.61 1
2016-10-08 13:58:00 0 0.00 0
2016-10-08 13:59:00 0 0.00 0
2016-10-08 14:00:00 0 0.00 0
2016-10-08 14:01:00 0 0.00 0
2016-10-08 14:02:00 in 8.05 1
2016-10-08 14:03:00 0 0.00 0
2016-10-08 14:04:00 0 0.00 0
2016-10-08 14:05:00 0 0.00 0
2016-10-08 14:06:00 0 0.00 0
2016-10-08 14:07:00 in 7.92 0
2016-10-08 14:08:00 0 0.00 0
2016-10-08 14:09:00 0 0.00 0
2016-10-08 14:10:00 0 0.00 0
2016-10-08 14:11:00 0 0.00 0
2016-10-08 14:12:00 in 7.98 0
2016-10-08 14:13:00 0 0.00 0
2016-10-08 14:14:00 0 0.00 0
2016-10-08 14:15:00 0 0.00 0
2016-10-08 14:16:00 0 0.00 0
2016-10-08 14:17:00 out 8.18 0
print (df2.dtypes)
A object
B float64
C int64
dtype: object
Better is use method='ffill in reindex:
index = pd.date_range(df.index[0], df.index[-1], freq="min")
df2 = df.reindex(index, method='ffill')
print (df2)
A B C
2016-10-08 13:57:00 in 5.61 1
2016-10-08 13:58:00 in 5.61 1
2016-10-08 13:59:00 in 5.61 1
2016-10-08 14:00:00 in 5.61 1
2016-10-08 14:01:00 in 5.61 1
2016-10-08 14:02:00 in 8.05 1
2016-10-08 14:03:00 in 8.05 1
2016-10-08 14:04:00 in 8.05 1
2016-10-08 14:05:00 in 8.05 1
2016-10-08 14:06:00 in 8.05 1
2016-10-08 14:07:00 in 7.92 0
2016-10-08 14:08:00 in 7.92 0
2016-10-08 14:09:00 in 7.92 0
2016-10-08 14:10:00 in 7.92 0
2016-10-08 14:11:00 in 7.92 0
2016-10-08 14:12:00 in 7.98 0
2016-10-08 14:13:00 in 7.98 0
2016-10-08 14:14:00 in 7.98 0
2016-10-08 14:15:00 in 7.98 0
2016-10-08 14:16:00 in 7.98 0
2016-10-08 14:17:00 out 8.18 0
print (df2.dtypes)
A object
B float64
C int64
dtype: object
If use resample, you can get column A back by unstack and stack, but unfortuntely there is still problem with float:
df3 = df.set_index('A', append=True)
.unstack()
.resample('Min', fill_method='ffill')
.stack()
.reset_index(level=1)
print (df3)
A B C
DATE_TIME
2016-10-08 13:57:00 in 5.61 1.0
2016-10-08 13:58:00 in 5.61 1.0
2016-10-08 13:59:00 in 5.61 1.0
2016-10-08 14:00:00 in 5.61 1.0
2016-10-08 14:01:00 in 5.61 1.0
2016-10-08 14:02:00 in 8.05 1.0
2016-10-08 14:03:00 in 8.05 1.0
2016-10-08 14:04:00 in 8.05 1.0
2016-10-08 14:05:00 in 8.05 1.0
2016-10-08 14:06:00 in 8.05 1.0
2016-10-08 14:07:00 in 7.92 0.0
2016-10-08 14:08:00 in 7.92 0.0
2016-10-08 14:09:00 in 7.92 0.0
2016-10-08 14:10:00 in 7.92 0.0
2016-10-08 14:11:00 in 7.92 0.0
2016-10-08 14:12:00 in 7.98 0.0
2016-10-08 14:13:00 in 7.98 0.0
2016-10-08 14:14:00 in 7.98 0.0
2016-10-08 14:15:00 in 7.98 0.0
2016-10-08 14:16:00 in 7.98 0.0
2016-10-08 14:17:00 out 8.18 0.0
print (df3.dtypes)
A object
B float64
C float64
dtype: object
I try modify previous answer for casting to `int:
int_cols = df.select_dtypes(['int64']).columns
print (int_cols)
Index(['C'], dtype='object')
index = pd.date_range(df.index[0], df.index[-1], freq="s")
df2 = df.reindex(index)
for col in df2:
if col == int_cols:
df2[col].ffill(inplace=True)
df2[col] = df2[col].astype(int)
elif df2[col].dtype == float:
df2[col].interpolate(inplace=True)
else:
df2[col].ffill(inplace=True)
#print (df2)
print (df2.dtypes)
A object
B float64
C int32
dtype: object
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With