I'm writing a Lisp (code at GitHub) and I want to implement local bindings. Currently I have two syntaxes:
(let <var> <val> <expr>)
for binding a single variable or function, and
(with (<var1> <val1> ... <varN> <valN>) <expr>)
to bind multiple values at once.
At present, the bindings are evaluated sequentially, and each new function binding retains a copy of the environment it was defined in, so <var2> can refer to <var1> but not vice-versa.
I would like to modify the code so that when binding multiple values at once you effectively have simultaneous binding. For example, I would like to be able to write (this is a trivial example, but it should illustrate the idea):
(define (h y)
(with ((f x) (if (eq? x 0) #t (g (- x 1)))
(g x) (if (eq? x 0) #f (f (- x 1))))
(f y))
At the moment this code doesn't run - g closes over f, but not the other way around.
Is there a canonical way to implement simultaneous binding in Lisp?
In SICP there's a section on internal definitions which covers this subject. In particular, the exercises 4.16, 4.18, 4.19 tell you how to implement different strategies for achieving simultaneous definitions.
The syntax is a bit different, but the idea in the book boils down to transforming this code:
(lambda <vars>
(define u <e1>)
(define v <e2>)
<e3>)
Into this code:
(lambda <vars>
(let ((u '*unassigned*)
(v '*unassigned*))
(set! u <e1>)
(set! v <e2>)
<e3>))
The same idea applies to your with special form. Take a look at the linked book for more implementation details.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With