While I was trying to solve exercise from generics tutorial Q&A My answers were slightly different
My Answers
public static <T extends Comparable<? super T>>
T max(List<? extends T> list, int begin, int end) //Option1
public static <T extends Comparable<T>>
T max(List<? extends T> list, int begin, int end) //Option2
from quoted answer below
So My question is
Option1 :Would it make any difference if T extends Object & Comparable<? super T> is replaced with T extends Comparable<? super T>. Isn't extends Object implicit ?
Option2 :Would it make any difference if Comparable<? super T> is replaced with Comparable<T> ? if so How ?
Eclipse code completion creates local variable List<? extends Comparable<? super Comparable<? super T>>> list; on Ctrl+1 max(list, 1, 10); which is bit lengthy. How to Define a classes (hierarchy) that extends Comparable<? super T> , create list and add instances to the list and invoke below method ? Basically I want to know how to invoke max() after adding class instances A or B into a list where class B extends A
Write a generic method to find the maximal element in the range [begin, end) of a list.
Answer:
import java.util.*;
public final class Algorithm {
public static <T extends Object & Comparable<? super T>>
T max(List<? extends T> list, int begin, int end) {
T maxElem = list.get(begin);
for (++begin; begin < end; ++begin)
if (maxElem.compareTo(list.get(begin)) < 0)
maxElem = list.get(begin);
return maxElem;
}
}
To call a generic method, you need to provide types that will be used during the method invocation. Those types can be passed as an instance of NType objects initialized with particular . NET types.
Generic methods allow type parameters to be used to express dependencies among the types of one or more arguments to a method and/or its return type. If there isn't such a dependency, a generic method should not be used. It is possible to use both generic methods and wildcards in tandem. Here is the method Collections.
Would it make any difference if
Comparable<? super T>is replaced withComparable<T>? if so How ?
Remember that Comparables are always consumers, i.e., a Comparable<T> consumes T instances, so it should always be preferrable to use Comparable<? super T> instead of Comparable<T> (Quoting - PECS). It would make difference in case you are comparing a type whose super class implements a Comparable<SuperType>. Consider the following code:
class Parent implements Comparable<Parent> {
protected String name;
@Override
public int compareTo(Parent o) {
return this.name.compareTo(o.name);
}
}
class Child extends Parent {
public Child(String name) {
this.name = name;
}
}
Now if you give your type parameter as T extends Comparable<T>, you won't be able to call that method for List<Child>, as Child does not implement Comparable<Child> but Comparable<Parent>:
public static <T extends Comparable<T>> T max(List<? extends T> list, int begin, int end) {
...
}
public static void main(String[] args) {
List<Child> list = new ArrayList<Child>();
max(list, 0, 2); // Error with current method. Child does not implement Comparable<Child>
}
Hence the type parameter bounds should be T extends Comparable<? super T>.
Note that, you can't change your Child class to:
class Child extends Parent implements Comparable<Child>
because in that case, Child class would extend from different instantiation of same generic type, which is not allowed.
Would it make any difference if
T extends Object & Comparable<? super T>is replaced withT extends Comparable<? super T>. Isn't extends Object implicit ?
Well, there is a difference between the two bounds. In the 1st bound, the erasure of the type parameter is Object, whereas in the 2nd bound, the erasure is Comparable.
So, without Object bound, your code will compile to:
public static Comparable max(List list, int begin, int end)
The issue might come when you are generifying the legacy non-generic code. It's neccessary to give Object also as upper bound to avoid breaking the Byte Code compatibility. You can read more about it on this link: Angelika Langer - Programming Idioms
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With