How would i fit a straight line and a quadratic to the data set below using the leastsq function from scipy.optimize? I know how to use polyfit to do it. But i need to use leastsq function.
Here are the x and y data sets:
x: 1.0,2.5,3.5,4.0,1.1,1.8,2.2,3.7
y: 6.008,15.722,27.130,33.772,5.257,9.549,11.098,28.828
Can someone help me out please?
optimize. leastsq. Minimize the sum of squares of a set of equations.
The SciPy open source library provides the curve_fit() function for curve fitting via nonlinear least squares. The function takes the same input and output data as arguments, as well as the name of the mapping function to use. The mapping function must take examples of input data and some number of arguments.
The leastsq() method finds the set of parameters that minimize the error function ( difference between yExperimental and yFit). I used a tuple to pass the parameters and lambda functions for the linear and quadratic fits.
leastsq starts from a first guess ( initial Tuple of parameters) and tries to minimize the error function. At the end, if leastsq succeeds, it returns the list of parameters that best fit the data. ( I printed to see it). I hope it works best regards
from scipy.optimize import leastsq
import numpy as np
import matplotlib.pyplot as plt
def main():
   # data provided
   x=np.array([1.0,2.5,3.5,4.0,1.1,1.8,2.2,3.7])
   y=np.array([6.008,15.722,27.130,33.772,5.257,9.549,11.098,28.828])
   # here, create lambda functions for Line, Quadratic fit
   # tpl is a tuple that contains the parameters of the fit
   funcLine=lambda tpl,x : tpl[0]*x+tpl[1]
   funcQuad=lambda tpl,x : tpl[0]*x**2+tpl[1]*x+tpl[2]
   # func is going to be a placeholder for funcLine,funcQuad or whatever 
   # function we would like to fit
   func=funcLine
   # ErrorFunc is the diference between the func and the y "experimental" data
   ErrorFunc=lambda tpl,x,y: func(tpl,x)-y
   #tplInitial contains the "first guess" of the parameters 
   tplInitial1=(1.0,2.0)
   # leastsq finds the set of parameters in the tuple tpl that minimizes
   # ErrorFunc=yfit-yExperimental
   tplFinal1,success=leastsq(ErrorFunc,tplInitial1[:],args=(x,y))
   print " linear fit ",tplFinal1
   xx1=np.linspace(x.min(),x.max(),50)
   yy1=func(tplFinal1,xx1)
   #------------------------------------------------
   # now the quadratic fit
   #-------------------------------------------------
   func=funcQuad
   tplInitial2=(1.0,2.0,3.0)
   tplFinal2,success=leastsq(ErrorFunc,tplInitial2[:],args=(x,y))
   print "quadratic fit" ,tplFinal2
   xx2=xx1
   yy2=func(tplFinal2,xx2)
   plt.plot(xx1,yy1,'r-',x,y,'bo',xx2,yy2,'g-')
   plt.show()
if __name__=="__main__":
   main()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With