My current setup is:
I'm using https://github.com/Azure/azure-event-hubs-spark/blob/master/docs/PySpark/structured-streaming-pyspark-jupyter.md as an example on how to read the data but:
What is the correct way to get each element of the stream and pass it through a python function?
Thanks,
Ed
In the first step you define a dataframe reading the data as a stream from your EventHub or IoT-Hub:
from pyspark.sql.functions import *
df = spark \
  .readStream \
  .format("eventhubs") \
  .options(**ehConf) \
  .load()
The data is stored binary in the body attribute. To get the elements of the body you have to define the structure:
from pyspark.sql.types import *
Schema = StructType([StructField("name", StringType(), True),
                      StructField("dt", LongType(), True),
                      StructField("main", StructType( 
                          [StructField("temp", DoubleType()), 
                           StructField("pressure", DoubleType())])),
                      StructField("coord", StructType( 
                          [StructField("lon", DoubleType()), 
                           StructField("lat", DoubleType())]))
                    ])
and apply the schema on the body casted as a string:
from pyspark.sql.functions import *
rawData = df. \
  selectExpr("cast(Body as string) as json"). \
  select(from_json("json", Schema).alias("data")). \
  select("data.*")
On the resulting dataframe you can apply functions, e. g. call the custom function u_make_hash on the column 'name':
 parsedData=rawData.select('name', u_make_hash(rawData['name']).alias("namehash"))  
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With