def answer_eight():
templist = list()
for county, region, p15, p14, ste, cty in zip(census_df.CTYNAME,
census_df.REGION,
census_df.POPESTIMATE2015,
census_df.POPESTIMATE2014,
census_df.STNAME,
census_df.CTYNAME):
# print(county)
if region == 1 or region == 2:
if county.startswith('Washington'):
if p15 > p14:
templist.append((ste, cty))
labels = ['STNAME', 'CTYNAME']
df = pd.DataFrame.from_records(templist, columns=labels)
return df
STNAME CTYNAME
0 Iowa Washington County
1 Minnesota Washington County
2 Pennsylvania Washington County
3 Rhode Island Washington County
4 Wisconsin Washington County
All these CTYNAME has different indexes in the original census_df. How could I transfer them over to the new DF so the answer looks like:
STNAME CTYNAME
12 Iowa Washington County
222 Minnesota Washington County
400 Pennsylvania Washington County
2900 Rhode Island Washington County
2999 Wisconsin Washington County
I'd include the index with the other things your are zipping
def answer_eight():
templist = list()
index = list()
zipped = zip(
census_df.CTYNAME,
census_df.REGION,
census_df.POPESTIMATE2015,
census_df.POPESTIMATE2014,
census_df.STNAME,
census_df.CTYNAME,
census_df.index
)
for county, region, p15, p14, ste, cty, idx in zipped:
# print(county)
if region == 1 or region == 2:
if county.startswith('Washington'):
if p15 > p14:
templist.append((ste, cty))
index.append(idx)
labels = ['STNAME', 'CTYNAME']
df = pd.DataFrame(templist, index, labels)
return df.rename_axis(census_df.index.name)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With