I have DataFrame:
df=pd.DataFrame({'id':[1,2,3],'item1':['AK','CK',None],
'item2':['b','d','e'],'item3':['c','e',np.nan]})
I want to convert all values of the column item1 into lowercase.
I've tried:
df['item1'].apply(lambda x: x.lower())
That gave me an error :
AttributeError: 'NoneType' object has no attribute 'lower'
I know why it happened. One from my column value is None.
I want to anyhow ignore that value and convert the rest of the values into lowercase.
Is there a way to overcome this?
P.S: My original DataFrame may have any number of values as it is returned by another function. Dropping the row is not a case here as those records are important for me.
Quite simply:
df['item1'].apply(lambda x: x.lower() if x is not None else x)
If you want to handle other possible types (ints, floats etc) which don't have a lower() method:
df['item1'].apply(lambda x: x.lower() if hasattr(x, "lower") and callable(x.lower) else x)
More general solution for None and NaNs values is use notnull function, anothe solution is use list comprehension.
Also pandas string functions working very nice with None and NaNs:
df['new1'] = df['item1'].apply(lambda x: x.lower() if pd.notnull(x) else x)
df['new2'] = [x.lower() if pd.notnull(x) else x for x in df['item1']]
df['new3'] = df['item1'].str.lower()
print (df)
id item1 item2 item3 new1 new2 new3
0 1 AK b c ak ak ak
1 2 CK d e ck ck ck
2 3 None e NaN None None None
df=pd.DataFrame({'id':[1,2,3],'item1':['AK',np.nan,None],
'item2':['b','d','e'],'item3':['c','e',np.nan]})
print (df)
id item1 item2 item3
0 1 AK b c
1 2 NaN d e
2 3 None e NaN
df['new1'] = df['item1'].apply(lambda x: x.lower() if pd.notnull(x) else x)
df['new2'] = [x.lower() if pd.notnull(x) else x for x in df['item1']]
df['new3'] = df['item1'].str.lower()
print (df)
id item1 item2 item3 new1 new2 new3
0 1 AK b c ak ak ak
1 2 NaN d e NaN NaN NaN
2 3 None e NaN None None None
List comprehesnion is faster in big DataFrames if not necessary check missing values:
large = pd.Series([random.choice(string.ascii_uppercase) +
random.choice(string.ascii_uppercase)
for _ in range(100000)])
In [275]: %timeit [x.lower() if pd.notnull(x) else x for x in large]
73.3 ms ± 4.24 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [276]: %timeit large.str.lower()
28.2 ms ± 684 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [277]: %timeit [x.lower() for x in large]
14.1 ms ± 784 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With