I am trying to group data from one column by data in another column, but I only want data from a specific time range. So lets say 2015-11-1 to 2016-4-30. My database looks something like this:
account_id employer_key login_date
1111111 google 2016-03-03 20:58:36.000000
2222222 walmart 2015-11-18 11:52:56.000000
2222222 walmart 2015-11-18 11:53:14.000000
1111111 google 2016-04-06 23:29:04.000000
3333333 dell_inc 2015-09-05 14:13:53.000000
3333333 dell_inc 2016-01-28 03:20:58.000000
2222222 walmart 2015-09-03 00:11:38.000000
1111111 google 2015-09-03 00:12:25.000000
1111111 google 2015-11-13 01:59:59.000000
4444444 google 2015-11-13 01:59:59.000000
5555555 dell_inc 2015-03-12 01:59:59.000000
I am trying to get an output that looks something like this (where it shows only a 1 or true if the person logged in during that time window and a 0 or false if they didn't):
employer_key account_id login_date
google 1111111 1
4444444 1
walmart 2222222 1
dell_inc 3333333 1
dell_inc 5555555 0
How can I go about doing this?
You can do it this way:
In [252]: df.groupby(['employer_key','account_id']) \
...: .apply(lambda x: len(x.query("'2015-11-01' <= login_date <= '2016-04-30'")) > 0) \
...: .reset_index()
Out[252]:
employer_key account_id 0
0 dell_inc 3333333 True
1 dell_inc 5555555 False
2 google 1111111 True
3 google 4444444 True
4 walmart 2222222 True
or using boolean indexing:
In [249]: df.groupby(['employer_key','account_id'])['login_date'] \
...: .apply(lambda x: len(x[x.ge('2015-11-01') & x.le('2016-04-30')]) > 0)
Out[249]:
employer_key account_id
dell_inc 3333333 True
5555555 False
google 1111111 True
4444444 True
walmart 2222222 True
Name: login_date, dtype: bool
or additionally using reset_index():
In [250]: df.groupby(['employer_key','account_id'])['login_date'] \
...: .apply(lambda x: len(x[x.ge('2015-11-01') & x.le('2016-04-30')]) > 0) \
...: .reset_index()
Out[250]:
employer_key account_id login_date
0 dell_inc 3333333 True
1 dell_inc 5555555 False
2 google 1111111 True
3 google 4444444 True
4 walmart 2222222 True
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With