For example, I have such array z:
array([1, 0, 1, 0, 0, 0, 1, 0, 0, 1])
How to find a distances between two successive 1s in this array? (measured in the numbers of 0s)
For example, in the z array, such distances are:
[1, 3, 2]
I have such code for it:
distances = []
prev_idx = 0
for idx, element in enumerate(z):
if element == 1:
distances.append(idx - prev_idx)
prev_idx = idx
distances = np.array(distances[1:]) - 1
Can this opeartion be done without for-loop and maybe in more efficient way?
UPD
The solution in the @warped answer works fine in 1-D case.
But what if z will be 2D-array like np.array([z, z])?
You can use np.where to find the ones, and then np.diff to get the distances:
q=np.where(z==1)
np.diff(q[0])-1
out:
array([1, 3, 2], dtype=int64)
for 2d arrays:
You can use the minimum of the manhattan distance (decremented by 1) of the positions that have ones to get the number of zeros inbetween:
def manhattan_distance(a, b):
return np.abs(np.array(a) - np.array(b)).sum()
zeros_between = []
r, c = np.where(z==1)
coords = list(zip(r,c))
for i, c in enumerate(coords[:-1]):
zeros_between.append(
np.min([manhattan_distance(c, coords[j])-1 for j in range(i+1, len(coords))]))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With