after $lookup i will get a join named lastViewed like this:
{
"_id" : "5955ea4fd8099718330ab191"
lastViewed: [
{
"_id" : ObjectId("595218a7d346d27fb0bc1705"),
"userId" : ObjectId("58c796d4344b9da4dfbe027b"),
"groupId" : ObjectId("5955ea4fd8099718330ab191"),
"lastViewedTime" : ISODate("2017-06-19T09:39:07.374Z")
},
{
"_id" : ObjectId("595218a7d346d27fb0bc1764"),
"userId" : ObjectId("58c796d4344b9da4dfbe027b"),
"groupId" : ObjectId("5955ea4fd8099718330ab162"),
"lastViewedTime" : ISODate("2017-05-11T09:39:07.374Z")
}
]
}
I want to use $filter and then $project values , my query is below where the userId is getting from params
$project: { "viewedDetails": {
"$filter": {
"input": "$lastViewed",
"as": "lastViewed",
"cond": { $and: [{ "$eq": ["$$lastViewed.userId", mongoose.Types.ObjectId(userId)] }, { "$eq": ["$$lastViewed.groupId", '$_id'] }] }
}
}
}
I got the exact output as below for userId 58c796d4344b9da4dfbe027b
{
"_id" : "5955ea4fd8099718330ab191"
viewedDetails: [
{
"_id" : ObjectId("595218a7d346d27fb0bc1705"),
"userId" : ObjectId("58c796d4344b9da4dfbe027b"),
"groupId" : ObjectId("5955ea4fd8099718330ab191"),
"lastViewedTime" : ISODate("2017-06-19T09:39:07.374Z")
}
]
}
Now i changed my schema into and got $lookup result as
{
"_id" : "5955ea4fd8099718330ab191"
lastViewed: [
{
"_id" : ObjectId("595218a7d346d27fb0bc1705"),
"userId" : ObjectId("58c796d4344b9da4dfbe027b"),
"members":[
{
"groupId" : ObjectId("5955ea4fd8099718330ab162"),
"lastViewedTime" : ISODate("2017-05-11T09:39:07.374Z")
}
{
"groupId" : ObjectId("5955ea4fd8099718330ab191"),
"lastViewedTime" : ISODate("2016-05-19T09:39:07.374Z")
}
]
}
]
}
then my filter for array of objects is not working , my query is
$project: { "viewedDetails": {
"$filter": {
"input": "$lastViewed",
"as": "lastViewed",
"cond": { $and: [{ "$eq": ["$$lastViewed.userId", mongoose.Types.ObjectId(userId)] },
{ "$eq": ["$$lastViewed.members.groupId", '$_id'] }] }
}
}
},
How can i get this without using $unwind, then using $project.
There is no need to $unwind
purely for comparison, since there are various operators which can determine a logical result by comparing to a list. You really only need change the cond
on the $filter
here;
Filtering the "members" requires wrapping with $map
to reflect the change though:
For MongoDB 3.4 you can use $in
:
"viewedDetails": {
"$map": {
"input": {
"$filter": {
"input": "$lastViewed",
"as": "lastViewed",
"cond": {
"$and": [
{ "$eq": ["$$lastViewed.userId", mongoose.Types.ObjectId(userId)] },
{ "$in": [ "$_id", "$$lastViewed.members.groupId" ] }
]
}
}
},
"as": "v",
"in": {
"_id": "$$v._id",
"userId": "$$v.userId",
"members": {
"$filter": {
"input": "$$v.members",
"as": "m",
"cond": { "$eq": [ "$$m.groupId", "$_id" ] }
}
}
}
}
}
Which compares the value against each of the values in the array returned by "$$lastViewed.members.groupId"
and returns true
or false
depending on if it is a match.
If you cannot use $in
then only the initial $filter
need change to one of the following:
Eariler than tat use $setIsSubset
"cond": {
"$and": [
{ "$eq": ["$$lastViewed.userId", mongoose.Types.ObjectId(userId)] },
{ "$setIsSubset": [ ["$_id"], "$$lastViewed.members.groupId" ] }
]
}
or even $setIntersection
and $size
"cond": {
"$and": [
{ "$eq": ["$$lastViewed.userId", mongoose.Types.ObjectId(userId)] },
{ "$gt": [
{ "$size": {
"$setIntersection": [
["$_id"],
"$$lastViewed.members.groupId"
]
}},
0
] }
]
}
Where the "intersection" resulting in a "set" that has "more than" 0
elements means that the value was present within the same referenced array.
Note that in those forms we make the "$_id"
value an array as ["$_id"]
since the "set comparison" is between "sets" and not an individual field.
This is the document you provided with corrections to syntax:
{
"_id" : ObjectId("5955ea4fd8099718330ab191"),
"lastViewed" : [
{
"_id" : ObjectId("595218a7d346d27fb0bc1705"),
"userId" : ObjectId("58c796d4344b9da4dfbe027b"),
"members" : [
{
"groupId" : ObjectId("5955ea4fd8099718330ab162"),
"lastViewedTime" : ISODate("2017-05-11T09:39:07.374Z")
},
{
"groupId" : ObjectId("5955ea4fd8099718330ab191"),
"lastViewedTime" : ISODate("2016-05-19T09:39:07.374Z")
}
]
}
]
}
Here is the pipeline stage being run:
db.collection.aggregate([
{ "$project": {
"viewedDetails": {
"$map": {
"input": {
"$filter": {
"input": "$lastViewed",
"as": "lastViewed",
"cond": {
"$and": [
{ "$eq": [ "$$lastViewed.userId", ObjectId("58c796d4344b9da4dfbe027b") ] },
{ "$in": [ "$_id", "$$lastViewed.members.groupId" ] }
]
}
}
},
"as": "v",
"in": {
"_id": "$$v._id",
"userId": "$$v.userId",
"members": {
"$filter": {
"input": "$$v.members",
"as": "m",
"cond": { "$eq": [ "$$m.groupId", "$_id" ] }
}
}
}
}
}
}}
])
And here is the output:
{
"_id" : ObjectId("5955ea4fd8099718330ab191"),
"viewedDetails" : [
{
"_id" : ObjectId("595218a7d346d27fb0bc1705"),
"userId" : ObjectId("58c796d4344b9da4dfbe027b"),
"members" : [
{
"groupId" : ObjectId("5955ea4fd8099718330ab191"),
"lastViewedTime" : ISODate("2016-05-19T09:39:07.374Z")
}
]
}
]
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With