I found many resources on how to draw Venn diagrams in R. Stack Overflow has a lot of them. However, I still can't draw my diagrams the way I want. Take the following code as an example:
library("VennDiagram")
A <- 1:4
B <- 3:6
d <- list(A, B)
vp <- venn.diagram(d, fill = c("white", "white"), alpha = 1, filename = NULL, 
  category.names=c("A", "B"))
grid.draw(vp)

I want the intersection between the sets to be red. However, if I change any of the white colors to red, I get the following:
vp_red <- venn.diagram(d, fill = c("red", "white"), alpha = 1, filename = NULL, 
  category.names=c("A", "B"))
grid.draw(vp_red)

That's not quite what I want. I want only the intersection to be red. If I change the alpha, this is what I get:
vp_alpha <- venn.diagram(d, fill = c("red", "white"), alpha = 0.5, filename = NULL, 
  category.names=c("A", "B"))
grid.draw(vp_alpha)

Now I have pink in my intersection. This is not what I want as well. What I want is something like this image from Wikipedia:

How can I do this? Maybe VennDiagram package can't do it and I need some other package, but I've been testing different ways to do it, and I'm not being able to find a solution.
Sets are represented in a Venn diagram by circles drawn inside a rectangle representing the universal set. The region outside the circle represents the complement of the set. The overlapping region of two circles represents the intersection of the two sets. Two circles together represent the union of the two sets.
In making a Venn diagram, we are often interested in the intersection of two sets—that is, what items are shared between categories. In this diagram, the teal area (where blue and green overlap) represents the intersection of A and B, or A ∩ B.
I will show two different possibilities. In the first example, polyclip::polyclip is used to get the intersection. In the second example, circles are converted to sp::SpatialPolygons and we get the intersection using rgeos::gIntersection. Then we re-plot the circles and fill the intersecting area.
The resulting object when using venn.diagram is
"of class
gListcontaining thegridobjects that make up the diagram"
Thus, in both cases we can grab relevant data from "vp". First, check the structure and list the grobs of the object:
str(vp)
grid.ls()
# GRID.polygon.234
# GRID.polygon.235
# GRID.polygon.236 <~~ these are the empty circles
# GRID.polygon.237 <~~ $ col : chr "black"; $ fill: chr "transparent"
# GRID.text.238 <~~ labels
# GRID.text.239
# GRID.text.240
# GRID.text.241
# GRID.text.242 
polyclip
Grab x- and y-values, and put them in the format required for polyclip:
A <- list(list(x = as.vector(vp[[3]][[1]]), y = as.vector(vp[[3]][[2]])))
B <- list(list(x = as.vector(vp[[4]][[1]]), y = as.vector(vp[[4]][[2]])))
Find intersection:
library(polyclip)
AintB <- polyclip(A, B)
Grab labels:
ix <- sapply(vp, function(x) grepl("text", x$name, fixed = TRUE))
labs <- do.call(rbind.data.frame, lapply(vp[ix], `[`, c("x", "y", "label")))
Plot it!
plot(c(0, 1), c(0, 1), type = "n", axes = FALSE, xlab = "", ylab = "")
polygon(A[[1]])
polygon(B[[1]])
polygon(AintB[[1]], col = "red")
text(x = labs$x, y = labs$y, labels = labs$label)

SpatialPolygons and gIntersection
Grab the coordinates of the circles:
# grab x- and y-values from first circle
x1 <- vp[[3]][["x"]]
y1 <- vp[[3]][["y"]]
# grab x- and y-values from second circle
x2 <- vp[[4]][["x"]]
y2 <- vp[[4]][["y"]]
Convert points to SpatialPolygons and find their intersection:
library(sp)
library(rgeos)
p1 <- SpatialPolygons(list(Polygons(list(Polygon(cbind(x1, y1))), ID = 1))) 
p2 <- SpatialPolygons(list(Polygons(list(Polygon(cbind(x2, y2))), ID = 2))) 
ip <- gIntersection(p1, p2) 
Plot it!
# plot circles 
plot(p1, xlim = range(c(x1, x2)), ylim = range(c(y1, y2))) 
plot(p2, add = TRUE) 
# plot intersection
plot(ip, add = TRUE, col = "red") 
# add labels (see above)
text(x = labs$x, y = labs$y, labels = labs$label)

I'm quite sure you could work directly on the grobs using clipping functions in grid or gridSVG package.
It's very easy in eulerr R package
library(eulerr)
plot(euler(c("A"=5,"B"=4,"A&B"=2)),quantities = TRUE,fills=c("white","white","red"))
euler set colours
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With