I'm having trouble understanding how values of boxed traits come into existence. Consider the following code:
trait Fooer {
fn foo(&self);
}
impl Fooer for i32 {
fn foo(&self) { println!("Fooer on i32!"); }
}
fn main() {
let a = Box::new(32); // works, creates a Box<i32>
let b = Box::<i32>::new(32); // works, creates a Box<i32>
let c = Box::<dyn Fooer>::new(32); // doesn't work
let d: Box<dyn Fooer> = Box::new(32); // works, creates a Box<Fooer>
let e: Box<dyn Fooer> = Box::<i32>::new(32); // works, creates a Box<Fooer>
}
Obviously, variant a and b work, trivially. However, variant c does not, probably because the new function takes only values of the same type which is not the case since Fooer != i32. Variant d and e work, which lets me suspect that some kind of automatic conversion from Box<i32> to Box<dyn Fooer> is being performed.
So my questions are:
Box<dyn Fooer> directly from an i32? If not: why not?However, variant c does not, probably because the
newfunction takes only values of the same type which is not the case sinceFooer != i32.
No, it's because there is no new function for Box<dyn Fooer>. In the documentation:
impl<T> Box<T>pub fn new(x: T) -> Box<T>
Most methods on Box<T> allow T: ?Sized, but new is defined in an impl without a T: ?Sized bound. That means you can only call Box::<T>::new when T is a type with a known size. dyn Fooer is unsized, so there simply isn't a new function to call.
In fact, that function can't exist in today's Rust. Box<T>::new needs to know the concrete type T so that it can allocate memory of the right size and alignment. Therefore, you can't erase T before you send it to Box::new. (It's conceivable that future language extensions may allow functions to accept unsized parameters; however, it's unclear whether even unsized_locals would actually enable Box<T>::new to accept unsized T.)
For the time being, unsized types like dyn Fooer can only exist behind a "fat pointer", that is, a pointer to the object and a pointer to the implementation of Fooer for that object. How do you get a fat pointer? You start with a thin pointer and coerce it. That's what's happening in these two lines:
let d: Box<Fooer> = Box::new(32); // works, creates a Box<Fooer>
let e: Box<Fooer> = Box::<i32>::new(32); // works, creates a Box<Fooer>
Box::new returns a Box<i32>, which is then coerced to Box<Fooer>. You could consider this a conversion, but the Box isn't changed; all the compiler does is stick an extra pointer on it and forget its original type. rodrigo's answer goes into more detail about the language-level mechanics of this coercion.
Hopefully all of this goes to explain why the answer to
Is there a way to create a
Box<Fooer>directly from ani32?
is "no": the i32 has to be boxed before you can erase its type. It's the same reason you can't write let x: Fooer = 10i32.
I'll try to explain what conversions (coercions) happen in your code.
There is a marker trait named Unsize that, between others:
Unsize is implemented for:
TisUnsize<Trait>whenT: Trait.- [...]
This trait, AFAIK, is not used directly for coercions. Instead, CoerceUnsized is used. This trait is implemented in a lot of cases, some of them are quite expected, such as:
impl<'a, 'b, T, U> CoerceUnsized<&'a U> for &'b T
where
'b: 'a,
T: Unsize<U> + ?Sized,
U: ?Sized
that is used to coerce &i32 into &Fooer.
The interesting, not so obvious implementation for this trait, that affects your code is:
impl<T, U> CoerceUnsized<Box<U>> for Box<T>
where
T: Unsize<U> + ?Sized,
U: ?Sized
This, together with the definition of the Unsize marker, can be somewhat read as: if U is a trait and T implements U, then Box<T> can be coerced into Box<U>.
About your last question:
Is there a way to create a
Box<Fooer>directly from ani32? If not: why not?
Not that I know of. The problem is that Box::new(T) requires a sized value, since the value passed is moved into the box, and unsized values cannot be moved.
In my opinion, the easiest way to do that is to simply write:
let c = Box::new(42) as Box<Fooer>;
That is, you create a Box of the proper type and then coerce to the unsized one (note it looks quite similar to your d example).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With