I'd like to lag whole dataframe in R.
In python, it's very easy to do this, using shift()
function
(ex: df.shift(1)
)
However, I could not find any as an easy and simple method as in pandas shift()
in R.
How can I do this?
> x = data.frame(a=c(1,2,3),b=c(4,5,6))
> x
a b
1 1 4
2 2 5
3 3 6
What I want is,
> lag(x,1)
>
a b
1 NA NA
2 1 4
3 2 5
Any good idea?
Pretty simple in base R:
rbind(NA, head(x, -1))
a b
1 NA NA
2 1 4
3 2 5
head
with -1 drops the final row and rbind
with NA as the first argument adds a row of NAs.
You can also use row indexing [
, like this
x[c(NA, 1:(nrow(x)-1)),]
a b
NA NA NA
1 1 4
2 2 5
This leaves an NA in the row name of the first variable, to "fix" this, you can strip the data.frame class and then reassign it:
data.frame(unclass(x[c(NA, 1:(nrow(x)-1)),]))
a b
1 NA NA
2 1 4
3 2 5
Here, you can use rep
to produce the desired lags
data.frame(unclass(x[c(rep(NA, 2), 1:(nrow(x)-2)),]))
a b
1 NA NA
2 NA NA
3 1 4
and even put this into a function
myLag <- function(dat, lag) data.frame(unclass(dat[c(rep(NA, lag), 1:(nrow(dat)-lag)),]))
Give it a try
myLag(x, 2)
a b
1 NA NA
2 NA NA
3 1 4
library(dplyr)
x %>% mutate_all(lag)
a b
1 NA NA
2 1 4
3 2 5
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With