I'm attempting to translate the "Hello ML.NET World" example from C# to F# (code copied below), but I'm getting an F# compiler error about incompatible types.
I've seen a couple blog posts about ML.NET and F#, but they all use the older API which involved explicitly creating a LearningPipeline object. As far as I can tell, this API has been removed.
The problematic line in C# is the line to train a pipeline:
var pipeline = mlContext.Transforms.Concatenate("Features", new[] { "Size" })
.Append(mlContext.Regression.Trainers.Sdca(labelColumnName: "Price", maximumNumberOfIterations: 100));
I've attempted to translate into F# like this:
let pipeline (mlContext:MLContext) =
mlContext.Transforms
.Concatenate("Features", [| "Size" |])
.Append(mlContext.Regression.Trainers.Sdca(labelColumnName = "Price", maximumNumberOfIterations = Nullable(100)))
However, I'm getting a compiler error: Type constraint mismatch: The type 'Transforms.ColumnConcatenatingEstimator' is not compatible with the type IEstimator<ITransformer>'.
I've also tried explicitly downcasting the ColumnConcatenatingEstimator to an IEstimator:
let pipeline' (mlContext:MLContext) =
let concat = mlContext.Transforms.Concatenate("Features", [| "Size" |])
let scda = mlContext.Regression.Trainers.Sdca(labelColumnName = "Price", maximumNumberOfIterations = Nullable(100))
let concatAsEstimator = concat :> IEstimator<_>
concatAsEstimator.Append(scda)
This slightly changes the types in the compiler error. The new message indicates that IEstimator<ColumnConcatenatingTransformer> is not compatible with IEstimator<ITransformer>.
It looks like I need to explicitly downcast the ColumnConcatenatingTransformer inside the generic into an ITransformer, but I'm not sure how to do this in F#. Is this possible?
For reference, here is the full C# code from Microsoft that I'm trying to adapt:
using System;
using Microsoft.ML;
using Microsoft.ML.Data;
class Program
{
public class HouseData
{
public float Size { get; set; }
public float Price { get; set; }
}
public class Prediction
{
[ColumnName("Score")]
public float Price { get; set; }
}
static void Main(string[] args)
{
MLContext mlContext = new MLContext();
// 1. Import or create training data
HouseData[] houseData = {
new HouseData() { Size = 1.1F, Price = 1.2F },
new HouseData() { Size = 1.9F, Price = 2.3F },
new HouseData() { Size = 2.8F, Price = 3.0F },
new HouseData() { Size = 3.4F, Price = 3.7F } };
IDataView trainingData = mlContext.Data.LoadFromEnumerable(houseData);
// 2. Specify data preparation and model training pipeline
var pipeline = mlContext.Transforms.Concatenate("Features", new[] { "Size" })
.Append(mlContext.Regression.Trainers.Sdca(labelColumnName: "Price", maximumNumberOfIterations: 100));
// 3. Train model
var model = pipeline.Fit(trainingData);
// 4. Make a prediction
var size = new HouseData() { Size = 2.5F };
var price = mlContext.Model.CreatePredictionEngine<HouseData, Prediction>(model).Predict(size);
Console.WriteLine($"Predicted price for size: {size.Size*1000} sq ft= {price.Price*100:C}k");
// Predicted price for size: 2500 sq ft= $261.98k
}
}
(Edit: just to clarify, this is not the same question as How to translate the intro ML.NET demo to F#.) This is a different code example, and it uses a newer version of ML.NET. The Microsoft link in that answer also appears to be broken now.
I've also struggled with this. Try with this helper function:
let append (estimator : IEstimator<'a>) (pipeline : IEstimator<'b>) =
match pipeline with
| :? IEstimator<ITransformer> as p ->
p.Append estimator
| _ -> failwith "The pipeline has to be an instance of IEstimator<ITransformer>."
let pipeline =
mlContext.Transforms.Concatenate("Features",[|"Size"|])
|> append(mlContext.Regression.Trainers.Sdca(labelColumnName = "Price", maximumNumberOfIterations = Nullable(100)))
ML.NET is built with C# in mind, hence sometimes converting to F# need to add Nullable and float32 everywhere.
Here is my version where I get rid of the PredictionEngine, I put the Sdca as trainer and use EstimatorChain() to append and create a IEstimator
open System
open Microsoft.ML
open Microsoft.ML.Data
type HouseData =
{
Size : float32
Price : float32
}
let downcastPipeline (x : IEstimator<_>) =
match x with
| :? IEstimator<ITransformer> as y -> y
| _ -> failwith "downcastPipeline: expecting a IEstimator<ITransformer>"
let mlContext = MLContext(Nullable 0)
let houseData =
[|
{ Size = 1.1F; Price = 1.2F }
{ Size = 1.1F; Price = 1.2F }
{ Size = 2.8F; Price = 3.0F }
{ Size = 3.4F; Price = 3.7F }
|] |> mlContext.Data.LoadFromEnumerable
let trainer =
mlContext.Regression.Trainers.Sdca(
labelColumnName= "Label",
featureColumnName = "Features",
maximumNumberOfIterations = Nullable 100
)
let pipeline =
EstimatorChain()
.Append(mlContext.Transforms.Concatenate("Features", "Size"))
.Append(mlContext.Transforms.CopyColumns("Label", "Price"))
.Append(trainer)
|> downcastPipeline
let model = pipeline.Fit houseData
let newSize = [| {Size = 2.5f; Price = 0.f} |]
let prediction =
newSize
|> mlContext.Data.LoadFromEnumerable
|> model.Transform
|> fun x -> x.GetColumn<float32> "Score"
|> Seq.toArray
printfn "Predicted price for size: %.0f sq ft= %.2fk" (newSize.[0].Size * 1000.f) (prediction.[0] * 100.f)
result
Predicted price for size: 2500 sq ft= 270.69k
Jon Wood's video F# ML.Net is also a good place to start using ML.Net in F#.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With