I want fill circle with gradient color, like I show on bottom. I can't figure out easy way, how to do that. I can make more circles, but transitions are visible.
cv::circle(img, center, circle_radius * 1.5, cv::Scalar(1.0, 1.0, 0.3), CV_FILLED);
cv::circle(img, center, circle_radius * 1.2, cv::Scalar(1.0, 1.0, 0.6), CV_FILLED);
cv::circle(img, center, circle_radius, cv::Scalar(1.0, 1.0, 1.0), CV_FILLED);

All you need to do is create a function which takes in a central point and a new point, calculates the distance, and returns a grayscale value for that point. Alternatively you could just return the distance, store the distance at that point, and then scale the whole thing later with cv::normalize().
So let's say you have the central point as (50, 50) in a (100, 100) image. Here's pseudocode for what you'd want to do:
function euclideanDistance(center, point) # returns a float
return sqrt( (center.x - point.x)^2 + (center.y - point.y)^2 )
center = (50, 50)
rows = 100
cols = 100
gradient = new Mat(rows, cols) # should be of type float
for row < rows:
for col < cols:
point = (col, row)
gradient[row, col] = euclideanDistance(center, point)
normalize(gradient, 0, 255, NORM_MINMAX, uint8)
gradient = 255 - gradient
Note the steps here:
uint8, but you do you)Now for your exact example image, there's a gradient in a circle, whereas this method just creates the whole image as a gradient. In your case, if you want a specific radius, just modify the function which calculates the Euclidean distance, and if it's beyond some distance, set it to 0 (the value at the center of the circle, which will be flipped eventually to white):
function euclideanDistance(center, point, radius) # returns a float
distance = sqrt( (center.x - point.x)^2 + (center.y - point.y)^2 )
if distance > radius:
return 0
else
return distance
Here is the above in actual C++ code:
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <cmath>
float euclidean_distance(cv::Point center, cv::Point point, int radius){
float distance = std::sqrt(
std::pow(center.x - point.x, 2) + std::pow(center.y - point.y, 2));
if (distance > radius) return 0;
return distance;
}
int main(){
int h = 400;
int w = 400;
int radius = 100;
cv::Mat gradient = cv::Mat::zeros(h, w, CV_32F);
cv::Point center(150, 200);
cv::Point point;
for(int row=0; row<h; ++row){
for(int col=0; col<w; ++col){
point.x = col;
point.y = row;
gradient.at<float>(row, col) = euclidean_distance(center, point, radius);
}
}
cv::normalize(gradient, gradient, 0, 255, cv::NORM_MINMAX, CV_8U);
cv::bitwise_not(gradient, gradient);
cv::imshow("gradient", gradient);
cv::waitKey();
}

A completely different method (though doing the same thing) would be to use the distanceTransform(). This function maps the distance from the center of a white blob to the nearest black value to a grayscale value, like we were doing above. This code is more concise and does the same thing. However, it can work on arbitrary shapes, not just circles, so that's cool.
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
int main(){
int h = 400;
int w = 400;
int radius = 100;
cv::Point center(150, 200);
cv::Mat gradient = cv::Mat::zeros(h, w, CV_8U);
cv::rectangle(gradient, cv::Point(115, 100), cv::Point(270, 350), cv::Scalar(255), -1, 8 );
cv::Mat gradient_padding;
cv::bitwise_not(gradient, gradient_padding);
cv::distanceTransform(gradient, gradient, CV_DIST_L2, CV_DIST_MASK_PRECISE);
cv::normalize(gradient, gradient, 0, 255, cv::NORM_MINMAX, CV_8U);
cv::bitwise_or(gradient, gradient_padding, gradient);
cv::imshow("gradient-distxform.png", gradient);
cv::waitKey();
}

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With