I have a DataFrame like
id chi prop ord
0 100 L 67 0
1 100 L 68 1
2 100 L 68 2
3 100 L 68 3
4 100 L 70 0
5 100 L 71 0
6 100 R 67 0
7 100 R 68 1
8 100 R 68 2
9 100 R 68 3
10 110 R 70 0
11 110 R 71 0
12 101 L 67 0
13 101 L 68 0
14 101 L 69 0
15 101 L 71 0
16 101 L 72 0
17 201 R 67 0
18 201 R 68 0
19 201 R 69 0
ord essentially gives the ordering of the entries when (prop, chi and id) all have the same value. This isn't quite what I'd like though. Instead, I'd like to be able to enumerate the entries of each group g in {(id, chi)} from 0 to n_g where n_g is the size of group g. So I'd like to obtain something that looks like
id chi prop count
0 100 L 67 0
1 100 L 68 1
2 100 L 68 2
3 100 L 68 3
4 100 L 70 4
5 100 L 71 5
6 100 R 67 0
7 100 R 68 1
8 100 R 68 2
9 100 R 68 3
10 110 R 70 0
11 110 R 71 1
12 101 L 67 0
13 101 L 68 1
14 101 L 69 2
15 101 L 71 3
16 101 L 72 4
17 201 R 67 0
18 201 R 68 1
19 201 R 69 2
I'd like to know if there's a simple way of doing this with pandas. The following comes very close, but it feels way too complicated, and it for some reason won't let me join the resulting dataframe with the original one.
(df.groupby(['id', 'chi'])
.apply(lambda g: np.arange(g.shape[0]))
.apply(pd.Series, 1)
.stack()
.rename('counter')
.reset_index()
.drop(columns=['level_2']))
EDIT: A second way of course is the for loop way, but I'm looking for something more "Pythonic" than:
for gname, idx in df.groupby(['id','chi']).groups.items():
tmp = df.loc[idx]
df.loc[idx, 'counter'] = np.arange(tmp.shape[0])
R has a very simple way of achieving this behaviour using the tidyverse packages, but I haven't quite found the well-oiled way to achieve the same thing with pandas. Any help provided is greatly appreciated!
.groupby().cumcount()df.assign(ord=df.groupby(['id', 'chi']).cumcount())
id chi prop ord
0 100 L 67 0
1 100 L 68 1
2 100 L 68 2
3 100 L 68 3
4 100 L 70 4
5 100 L 71 5
6 100 R 67 0
7 100 R 68 1
8 100 R 68 2
9 100 R 68 3
10 110 R 70 0
11 110 R 71 1
12 101 L 67 0
13 101 L 68 1
14 101 L 69 2
15 101 L 71 3
16 101 L 72 4
17 201 R 67 0
18 201 R 68 1
19 201 R 69 2
defaultdict and itertools.countfrom itertools import count
from collections import defaultdict
d = defaultdict(count)
df.assign(ord=[next(d[t]) for t in zip(df.id, df.chi)])
id chi prop ord
0 100 L 67 0
1 100 L 68 1
2 100 L 68 2
3 100 L 68 3
4 100 L 70 4
5 100 L 71 5
6 100 R 67 0
7 100 R 68 1
8 100 R 68 2
9 100 R 68 3
10 110 R 70 0
11 110 R 71 1
12 101 L 67 0
13 101 L 68 1
14 101 L 69 2
15 101 L 71 3
16 101 L 72 4
17 201 R 67 0
18 201 R 68 1
19 201 R 69 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With