What is an efficient way to produce phrase anagrams given a string?
The problem I am trying to solve
Assume you have a word list with n words. Given an input string, say, "peanutbutter", produce all phrase anagrams. Some contenders are: pea nut butter, A But Ten Erupt, etc.
My solution
I have a trie that contains all words in the given word list. Given an input string, I calculate all permutations of it. For each permutation, I have a recursive solution (something like this) to determine if that specific permuted string can be broken in to words. For example, if one of the permutations of peanutbutter was "abuttenerupt", I used this method to break it into "a but ten erupt". I use the trie to determine if a string is a valid word.
What sucks
My problem is that because I calculate all permutations, my solution runs very slow for phrases that are longer than 10 characters, which is a big let down. I want to know if there is a way to do this in a different way. Websites like https://wordsmith.org/anagram/ can do the job in less than a second and I am curious to know how they do it.
Your problem can be decomposed to 2 sub-problems:
Subproblem #2 is a basic algorithm and you can find existing standard implementation in most programming language. Let's focus on subproblem #1
First convert the input string to a "character pool". We can implement the character pool as an array oc, where oc[c] = number of occurrence of character c.
Then we use backtracking algorithm to find words that fit in the charpool as in this pseudo-code:
result = empty;
function findAnagram(pool)
if (pool empty) then print result;
for (word in dictionary) {
if (word fit in charpool) {
result = result + word;
update pool to exclude characters in word;
findAnagram(pool);
// as with any backtracking algorithm, we have to restore global states
restore pool;
restore result;
}
}
}
Note: If we pass the charpool by value then we don't have to restore it. But as it is quite big, I prefer passing it by reference.
Now we remove redundant results and apply some optimizations:
Assuming A comes before B in the dictionary. If we choose the first word is B, then we don't have to consider word A in following steps, because those results (if we take A) would already be in the case where A is chosen as the first word
If the character set is small enough (< 64 characters is best), we can use a bitmask to quickly filter words that cannot fit in the pool. A bitmask mask which character is in a word, no matter how many time it occurs.
Update the pseudo-code to reflect those optimizations:
function findAnagram(charpool, minDictionaryIndex)
pool_bitmask <- bitmask(charpool);
if (pool empty) then print result;
for (word in dictionary AND word's index >= minDictionaryIndex) {
// bitmask of every words in the dictionary should be pre-calculated
word_bitmask <- bitmask(word)
if (word_bitmask contains bit(s) that is not in pool_bitmask)
then skip this for iteration
if (word fit in charpool) {
result = result + word;
update charpool to exclude characters in word;
findAnagram(charpool, word's index);
// as with any backtracking algorithm, we have to restore global states
restore pool;
restore result;
}
}
}
My C++ implementation of subproblem #1 where the character set contains only lowercase 'a'..'z': http://ideone.com/vf7Rpl .
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With