I'm trying to create a neon-effect w/ a source image. I have included three images, the source, my current attempt & a target. The program takes the image, finds the white-edges, & calculates the distance from each pixel to the nearest white-edge (these parts both work fine); from there, I am struggling to find the right saturation and value parameters to create the neon-glow.
From the target image, what I need to happen is basically for the saturation to be 0 on a white-edge, then to dramatically increase the further away it gets from an edge; for value, I need it to be 1 on a white-edge, then to dramatically decrease. I can't figure out the best way to manipulate distance_image (which holds each pixel's distance from the nearest white-edge) such as to achieve these two results with saturation and value.
from PIL import Image
import cv2
import numpy as np
from scipy.ndimage import binary_erosion
from scipy.spatial import KDTree
def find_closest_distance(img):
white_pixel_points = np.array(np.where(img))
tree = KDTree(white_pixel_points.T)
img_meshgrid = np.array(np.meshgrid(np.arange(img.shape[0]),
np.arange(img.shape[1]))).T
distances, _ = tree.query(img_meshgrid)
return distances
def find_edges(img):
img_np = np.array(img)
kernel = np.ones((3,3))
return img_np - binary_erosion(img_np, kernel)*255
img = Image.open('a.png').convert('L')
edge_image = find_edges(img)
distance_image = find_closest_distance(edge_image)
max_dist = np.max(distance_image)
distance_image = distance_image / max_dist
hue = np.full(distance_image.shape, 0.44*180)
saturation = distance_image * 255
value = np.power(distance_image, 0.2)
value = 255 * (1 - value**2)
new_tups = np.dstack((hue, saturation, value)).astype('uint8')
new_tups = cv2.cvtColor(new_tups, cv2.COLOR_HSV2BGR)
new_img = Image.fromarray(new_tups, 'RGB').save('out.png')
The following images show the source data (left), the current result (middle), and the desired result (right).

Here is one way to do that in Python/OpenCV.
Input:

import cv2
import numpy as np
import skimage.exposure
# read input
img = cv2.imread('rectangles.png')
# convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# threshold
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# do morphology gradient to get edges and invert so black edges on white background
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
edges = cv2.morphologyEx(thresh, cv2.MORPH_GRADIENT, kernel)
edges = 255 - edges
# get distance transform
dist = edges.copy()
distance = cv2.distanceTransform(dist, distanceType=cv2.DIST_L2, maskSize=3)
print(np.amin(distance), np.amax(distance))
# stretch to full dynamic range and convert to uint8 as 3 channels
stretch = skimage.exposure.rescale_intensity(distance, in_range=('image'), out_range=(0,255))
# invert
stretch = 255 - stretch
max_stretch = np.amax(stretch)
# normalize to range 0 to 1 by dividing by max_stretch
stretch = (stretch/max_stretch)
# attenuate with power law
pow = 4
attenuate = np.power(stretch, pow)
attenuate = cv2.merge([attenuate,attenuate,attenuate])
# create a green image the size of the input
color_img = np.full_like(img, (0,255,0), dtype=np.float32)
# multiply the color image with the attenuated distance image
glow = (color_img * attenuate).clip(0,255).astype(np.uint8)
# save results
cv2.imwrite('rectangles_edges.png', edges)
cv2.imwrite('rectangles_stretch.png', (255*stretch).clip(0,255).astype(np.uint8))
cv2.imwrite('rectangles_attenuate.png', (255*attenuate).clip(0,255).astype(np.uint8))
cv2.imwrite('rectangles_glow.png', glow)
# view results
cv2.imshow("EDGES", edges)
cv2.imshow("STRETCH", stretch)
cv2.imshow("ATTENUATE", attenuate)
cv2.imshow("RESULT", glow)
cv2.waitKey(0)
Edges (inverted):

Stretched Distance Transform:

Attenuated Distance Transform:

Glow Result:

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With