I am working with a dataframe, where every column represents a company. The index is a datetime index with daily frequency. My problem is the following: For each company, I would like to fill a month with NaN if there are less than 20 values in that month. In the example below, this would mean that Company_1's entry 0.91 on 2012-08-31 would be changed to NaN, while company_2 and 3 would be unchanged.
Company_1 Company_2 Company_3
2012-08-01 NaN 0.99 0.11
2012-08-02 NaN 0.21 NaN
2012-08-03 NaN 0.32 0.40
... ... ... ...
2012-08-29 NaN 0.50 -0.36
2012-08-30 NaN 0.48 -0.32
2012-08-31 0.91 0.51 -0.33
Total Values: 1 22 21
I am struggling to find an efficient way to count the number of values for each month of each stock. I could theoretically write a function which creates a new dataframe, which reports the number of values for each month (and for each stock), to then use that dataframe for the original company information, but I am sure that there has to be an easier way. Any help is highly appreciated. Thanks in advance.
groupby the dataframe on monthly freq and transform using count then using Series.lt create a boolean mask and use this mask to fill NaN values in dataframe:
df1 = df.mask(df.groupby(pd.Grouper(freq='M')).transform('count').lt(20))
print(df1)
Company_1 Company_2 Company_3
2012-08-01 NaN 0.99 0.11
2012-08-02 NaN 0.21 NaN
2012-08-03 NaN 0.32 0.40
....
2012-08-29 NaN 0.50 -0.36
2012-08-30 NaN 0.48 -0.32
2012-08-31 NaN 0.51 -0.33
IIUC:
df.loc[:, df.apply(lambda d: d.notnull().sum()<20)] = np.NaN
print (df)
Company 1 Company 2 Company 3
2012-08-01 NaN 0.99 0.11
2012-08-02 NaN 0.21 NaN
2012-08-03 NaN 0.32 0.40
2012-08-29 NaN 0.50 -0.36
2012-08-30 NaN 0.48 -0.32
2012-08-31 NaN 0.51 -0.33
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With