I am new to Pandas and programming in general, so any help would be greatly appreciated.
I am having difficulty converting a column of data in a Pandas dataframe, loaded from an hdf5 file, to a datetime object. The data is too large to work with has a text file, so I converted it to an hdf5 file using the following code:
# get text file from zip file and unzip
file = urllib.request.urlretrieve(file, dir)
z = zipfile.ZipFile(dir)
data = z.open(z.namelist()[0])
# column names from text file
colnames = ['Patent#','App#','Small','Filing Date','Issue Date', 'Event Date', 'Event Code']
# load the data in chunks and concat into single DataFrame
mfees = pd.read_table(data, index_col=0, sep='\s+', header = None, names = colnames, chunksize=1000, iterator=True)
df = pd.concat([chunk for chunk in mfees], ignore_index=False)
# close files
z.close()
data.close()
# convert to hdf5 file
data = data.to_hdf('mfees.h5','raw_data',format='table')
After this my data is in the following format:
data['Filing Date']
Output:
Patent#
4287053 19801222
4287053 19801222
4289713 19810105
4289713 19810105
4289713 19810105
4289713 19810105
4289713 19810105
4289713 19810105
Name: Filing Date, Length: 11887679, dtype: int64
However, when I use the to_datetime function, I get the following:
data['Filing Date'] = pd.to_datetime(data['Filing Date'])
data['Filing Date']
Output:
Patent#
4287053 1970-01-01 00:00:00.019801222
4287053 1970-01-01 00:00:00.019801222
4289713 1970-01-01 00:00:00.019810105
4289713 1970-01-01 00:00:00.019810105
4289713 1970-01-01 00:00:00.019810105
4289713 1970-01-01 00:00:00.019810105
4289713 1970-01-01 00:00:00.019810105
4289713 1970-01-01 00:00:00.019810105
4289713 1970-01-01 00:00:00.019810105
4291808 1970-01-01 00:00:00.019801212
4291808 1970-01-01 00:00:00.019801212
4292069 1970-01-01 00:00:00.019810123
4292069 1970-01-01 00:00:00.019810123
4292069 1970-01-01 00:00:00.019810123
4292069 1970-01-01 00:00:00.019810123
Name: Filing Date, Length: 11887679, dtype: datetime64[ns]
I am not sure why I am getting the above output for the datetime object. Is there something I can do correct this and properly convert the dates to datetime objects? Thanks!
Easiest just to convert when you are reading it in (note that I copy pasted your data, so you just need to add the parse_dates=[1] option
In [31]: df = read_csv(StringIO(data),sep='\s+',header=None,parse_dates=[1],names=['num','date']).set_index('num')
In [32]: df
Out[32]:
date
num
4287053 1980-12-22 00:00:00
4287053 1980-12-22 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
In [33]: df.dtypes
Out[33]:
date datetime64[ns]
dtype: object
Then the hdf will handle the column
In [46]: df.to_hdf('test.h5','df',mode='w',format='table')
In [47]: pd.read_hdf('test.h5','df')
Out[47]:
date
num
4287053 1980-12-22 00:00:00
4287053 1980-12-22 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
4289713 1981-01-05 00:00:00
In [48]: pd.read_hdf('test.h5','df').dtypes
Out[48]:
date datetime64[ns]
dtype: object
Here's a converter for int-like dates, should be pretty fast
In [18]: s = Series([19801222,19801222] + [19810105]*5)
In [19]: s
Out[19]:
0 19801222
1 19801222
2 19810105
3 19810105
4 19810105
5 19810105
6 19810105
dtype: int64
In [20]: s = s.values.astype(object)
In [21]: Series(pd.lib.try_parse_year_month_day(s/10000,s/100 % 100, s % 100))
Out[21]:
0 1980-12-22 00:00:00
1 1980-12-22 00:00:00
2 1981-01-05 00:00:00
3 1981-01-05 00:00:00
4 1981-01-05 00:00:00
5 1981-01-05 00:00:00
6 1981-01-05 00:00:00
dtype: datetime64[ns]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With