I have two sets of data, one is coordinates of machines, one is coordinates of the nearest repair shop.
I have a working model that has assigned each machine to the nearest store. However one store only has 1 machine and another has 7 machines assigned to it.
What I want is to add a condition so that each store is assigned at least 2 machines but no more than 4.
library(geosphere)
library(ggplot2)
#machine Locations
machine.x <- c(-122.37, -111.72, -111.87, -112.05, -87.17, -86.57, -86.54, -88.04, -86.61, -88.04, -86.61)
machine.y <- c(37.56, 35.23, 33.38, 33.57, 30.36, 30.75, 30.46, 30.68, 30.42, 30.68, 30.42)
machines <- data.frame(machine.x, machine.y)
#store locations
store.x <- c(-121.98, -112.17, -86.57)
store.y <- c(37.56, 33.59, 30.75)
stores <- data.frame(store.x, store.y)
centers<-data.frame(x=stores$store.x, y=stores$store.y)
pts<-data.frame(x=(machines$machine.x), y=(machines$machine.y))
#allocate space
distance<-matrix(-1, nrow = length(pts$x), ncol= length(centers$x))
#calculate the dist matrix - the define centers to each point
#columns represent centers and the rows are the data points
dm<-apply(data.frame(1:length(centers$x)), 1, function(x){ replace(distance[,x], 1:length(pts$x), distGeo(centers[x,], pts))})
#find the column with the smallest distance
closestcenter<-apply(dm, 1, which.min)
#color code the original data for verification
colors<-c(stores)
#create a scatter plot of assets color coded by which fe they belong to
plot(pts, col=closestcenter, pch=9)

So what I want is for each group to have a minimum count of 2 and a max count of 4, I tried adding a if else statement in the closest center variable but it didn't get even close to working out the way I thought it would. and i've looked around on line but can't find any way to add a counting condition to the which.min statement.
Note:My actual data set has several thousand machines and over 100 stores.
If M is an 11 x 3 zero-one matrix where M[i,j] = 1 if machine i is assigned to store j and 0 otherwise then the rows of M must each sum to 1 and the columns must each sum to 2 to 4 inclusive and we want to choose such an M which minimizes the sum of the distances sum(M * dm), say. This would give us the 0-1 linear program shown below. Below A is such that A %*% c(M) is the same as rowSums(M). Also B is such that B %*% c(M) is the same as colSums(M).
library(lpSolve)
k <- 3
n <- 11
dir <- "min"
objective.in <- c(dm)
A <- t(rep(1, k)) %x% diag(n)
B <- diag(k) %x% t(rep(1, n))
const.mat <- rbind(A, B, B)
const.dir <- c(rep("==", n), rep(">=", 3), rep("<=", 3))
const.rhs <- c(rep(1, n), rep(2, k), rep(4, k))
res <- lp(dir, objective.in, const.mat, const.dir, const.rhs, all.bin = TRUE)
res
## Success: the objective function is 9025807
soln <- matrix(res$solution, n, k)
and this solution:
> soln
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 1 0 0
[3,] 0 1 0
[4,] 0 1 0
[5,] 0 1 0
[6,] 0 0 1
[7,] 0 0 1
[8,] 1 0 0
[9,] 0 0 1
[10,] 0 1 0
[11,] 0 0 1
or in terms of the vector of store numbers assigned to each machine:
c(soln %*% (1:k))
## [1] 1 1 2 2 2 3 3 1 3 2 3
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With