I have a C-style function, which stores another function as an argument. I also have an object, which stores a method that must be passed to the aforementioned function. I built an example, to simulate the desired situation:
#include <functional>
#include <iostream>
void foo(void(*f)(int)) {
f(2);
}
class TestClass {
public:
std::function<void(int)> f;
void foo(int i) {
std::cout << i << "\n";
}
};
int main() {
TestClass t;
t.f = std::bind(&TestClass::foo, &t, std::placeholders::_1);
foo( t.f.target<void(int)>() );
return 0;
}
What is expected is that it will be shown on screen "2". But I'm having trouble compiling the code, getting the following message on the compiler:
error: const_cast to 'void *(*)(int)', which is not a reference, pointer-to-object, or pointer-to-data-member
return const_cast<_Functor*>(__func);
As I understand the use of "target", it should return a pointer in the format void () (int), related to the desired function through std :: bind. Why didn't the compiler understand it that way, and if it is not possible to use "target" to apply what I want, what would be the alternatives? I don't necessarily need to use std :: function, but I do need the method to be non-static.
This is a dirty little hack but should work
void foo(void(*f)(int)) {
f(2);
}
class TestClass {
public:
void foo(int i) {
std::cout << i << "\n";
}
};
static TestClass* global_variable_hack = nullptr;
void hacky_function(int x) {
global_variable_hack->foo(x);
}
int main() {
TestClass t;
global_variable_hack = &t;
foo(hacky_function);
return 0;
}
//can also be done with a lambda without the global stuff
int main() {
static TestClass t;
auto func = [](int x) {
t->foo(x); //does not need to be captured as it is static
};
foo(func); //non-capturing lambas are implicitly convertible to free functions
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With