I'm changing an uint32_t to a float but without changing the actual bits.
Just to be sure: I don't wan't to cast it. So float f = (float) i is the exact opposite of what I wan't to do because it changes bits.
I'm going to use this to convert my (pseudo) random numbers to float without doing unneeded math.
What I'm currently doing and what is already working is this:
float random_float( uint64_t seed ) {
// Generate random and change bit format to ieee
uint32_t asInt = (random_int( seed ) & 0x7FFFFF) | (0x7E000000>>1);
// Make it a float
return *(float*)(void*)&asInt; // <-- pretty ugly and nees a variable
}
The Question: Now I'd like to get rid of the asInt variable and I'd like to know if there is a better / not so ugly way then getting the address of this variable, casting it twice and dereferencing it again?
You could try union - as long as you make sure the types are identical in memory sizes:
union convertor {
int asInt;
float asFloat;
};
Then you can assign your int to asFloat (or the other way around if you want to). I use it a lot when I need to do bitwise operations on one hand and still get a uint32_t representation on the number on the other hand
[EDIT]
Like many of the commentators rightfully state, you must take into consideration values that are not presentable by integers like like NAN, +INF, -INF, +0, -0.
So you seem to want to generate floating point numbers between 0.5 and 1.0 judging from your code.
Assuming that your microcontroller has a standard C library with floating point support, you can do this all standards compliant without actually involving any floating point operations, all you need is the ldexp function that itself doesn't actually do any floating point math.
This would look something like this:
return ldexpf((1 << 23) + random_thing_smaller_than_23_bits(), -24);
The trick here is that we happen to know that IEEE754 binary32 floating point numbers have integer precision between 2^23 and 2^24 (I could be off-by-one here, double check please, I'm translating this from some work I've done on doubles). So the compiler should know how to convert that number to a float trivially. Then ldexp multiplies that number by 2^-24 by just changing the bits in the exponent. No actual floating point operations involved and no undefined behavior, the code is fully portable to any standard C implementation with IEEE754 numbers. Double check the generated code, but a good compiler and c library should not use any floating point instructions here.
If you want to peek at some experiments I've done around generating random floating point numbers you can peek at this github repo. It's all about doubles, but should be trivially translatable to floats.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With