Looking at the answer here How can I estimate bootstrapped intervals? This question was asked on the ggplot2 list as well.
library(dplyr)
mtcars %>%
group_by(vs) %>%
summarise(mean.mpg = mean(mpg, na.rm = TRUE),
sd.mpg = sd(mpg, na.rm = TRUE),
n.mpg = n()) %>%
mutate(se.mpg = sd.mpg / sqrt(n.mpg),
lower.ci.mpg = mean.mpg - qt(1 - (0.05 / 2), n.mpg - 1) * se.mpg,
upper.ci.mpg = mean.mpg + qt(1 - (0.05 / 2), n.mpg - 1) * se.mpg)
The Hmisc package has a function smean.cl.boot to compute simple bootstrap confidence intervals easily. The hardest part (IMO) is incorporating the multiple outputs of this result (the function returns a 3-element numeric vector) into a dplyr workflow (see dplyr::mutate to add multiple values)
library(Hmisc) ## optional if using Hmisc:: below
library(dplyr)
mtcars %>%
group_by(vs) %>%
do(data.frame(rbind(Hmisc::smean.cl.boot(.$mpg))))
The new columns are labeled just Mean, Lower, Upper, but an additional setNames call would fix that ...
If doing a lot of this,
bootf <- function(x,var="mpg") {
newstuff <- rbind(Hmisc::smean.cl.boot(x[[var]])) %>%
data.frame %>%
setNames(paste(var,c("mean","lwr","upr"),sep="_"))
return(newstuff)
}
mtcars %>% group_by(vs) %>% do(bootf(.))
mtcars %>% group_by(cyl) %>% do(bootf(.))
The code below includes a simple bootstrapping function plus some additional code to return an informative data frame:
my_boot = function(x, times=1000) {
# Get column name from input object
var = deparse(substitute(x))
var = gsub("^\\.\\$","", var)
# Bootstrap 95% CI
cis = quantile(replicate(times, mean(sample(x, replace=TRUE))), probs=c(0.025,0.975))
# Return data frame of results
data.frame(var, n=length(x), mean=mean(x), lower.ci=cis[1], upper.ci=cis[2])
}
mtcars %>%
group_by(vs) %>%
do(my_boot(.$mpg))
vs var n mean lower.ci upper.ci <dbl> <fctr> <int> <dbl> <dbl> <dbl> 1 0 mpg 18 16.61667 15.14972 18.06139 2 1 mpg 14 24.55714 22.36357 26.80750
Based on your comments, here is an updated method to get bootsrapped confidence intervals for any selection of columns:
library(reshape2)
library(tidyr)
my_boot = function(x, times=1000) {
# Bootstrap 95% CI
cis = quantile(replicate(times, mean(sample(x, replace=TRUE))), probs=c(0.025,0.975))
# Return results as a data frame
data.frame(mean=mean(x), lower.ci=cis[1], upper.ci=cis[2])
}
mtcars %>%
group_by(vs) %>%
do(as.data.frame(apply(., 2, my_boot))) %>%
melt(id.var="vs") %>%
separate(variable, sep="\\.", extra="merge", into=c("col","stat")) %>%
dcast(vs + col ~ stat, value.var="value")
vs col lower.ci mean upper.ci 1 0 am 0.1111111 0.3333333 0.5555556 2 0 carb 3.0000000 3.6111111 4.2777778 3 0 cyl 6.8888889 7.4444444 7.8888889 4 0 disp 262.3205556 307.1500000 352.4481944 5 0 drat 3.1877639 3.3922222 3.6011528 6 0 gear 3.2222222 3.5555556 3.9444444 7 0 hp 164.0500000 189.7222222 218.5625000 8 0 mpg 14.9552778 16.6166667 18.3225000 9 0 qsec 16.1888750 16.6938889 17.1744583 10 0 vs 0.0000000 0.0000000 0.0000000 11 0 wt 3.2929569 3.6885556 4.0880069 12 1 am 0.2142857 0.5000000 0.7857143 13 1 carb 1.2857143 1.7857143 2.3571429 14 1 cyl 4.1428571 4.5714286 5.0000000 15 1 disp 105.5703571 132.4571429 161.4657143 16 1 drat 3.5992143 3.8592857 4.1100000 17 1 gear 3.5714286 3.8571429 4.1428571 18 1 hp 79.7125000 91.3571429 103.2142857 19 1 mpg 21.8498214 24.5571429 27.3289286 20 1 qsec 18.7263036 19.3335714 20.0665893 21 1 vs 1.0000000 1.0000000 1.0000000 22 1 wt 2.2367000 2.6112857 2.9745571
UPDATE: To answer your comment to me in @BenBolker's answer: If you want the results returned by sample, you can do this:
boot.dat = replicate(1000, sample(mtcars$mpg[mtcars$vs==1], replace=TRUE))
This will return a matrix with 1000 columns, each of which will be a separate bootstrap sample of mtcars$mpg for vs==1. You could also do:
boot.by.vs = sapply(split(mtcars, mtcars$vs), function(df) {
replicate(1000, sample(df$mpg, replace=TRUE))
}, simplify=FALSE)
This will return a list where the first list element is the matrix of bootstrap samples for vs==0 and the second is for vs==1.
UPDATE 2: To answer your second comment, here's how to bootstrap the whole data frame (and assuming you want to save all the copies, rather than summarise them. The code below returns a list of 1000 bootstrapped versions of mtcars1. This list will be huge if you have a lot of data, so you'll probably just want to keep summary results, like column means, for each bootstrap sample.
boot.df = lapply(1:1000, function(i) mtcars[sample(1:nrow(mtcars), replace=TRUE), ])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With