Is there anything wrong with the thread safety of this java code? Threads 1-10 add numbers via sample.add(), and Threads 11-20 call removeAndDouble() and print the results to stdout. I recall from the back of my mind that someone said that assigning item in same way as I've got in removeAndDouble() using it outside of the synchronized block may not be thread safe. That the compiler may optimize the instructions away so they occur out of sequence. Is that the case here? Is my removeAndDouble() method unsafe?
Is there anything else wrong from a concurrency perspective with this code? I am trying to get a better understanding of concurrency and the memory model with java (1.6 upwards).
import java.util.*;
import java.util.concurrent.*;
public class Sample {
private final List<Integer> list = new ArrayList<Integer>();
public void add(Integer o) {
synchronized (list) {
list.add(o);
list.notify();
}
}
public void waitUntilEmpty() {
synchronized (list) {
while (!list.isEmpty()) {
try {
list.wait(10000);
} catch (InterruptedException ex) { }
}
}
}
public void waitUntilNotEmpty() {
synchronized (list) {
while (list.isEmpty()) {
try {
list.wait(10000);
} catch (InterruptedException ex) { }
}
}
}
public Integer removeAndDouble() {
// item declared outside synchronized block
Integer item;
synchronized (list) {
waitUntilNotEmpty();
item = list.remove(0);
}
// Would this ever be anything but that from list.remove(0)?
return Integer.valueOf(item.intValue() * 2);
}
public static void main(String[] args) {
final Sample sample = new Sample();
for (int i = 0; i < 10; i++) {
Thread t = new Thread() {
public void run() {
while (true) {
System.out.println(getName()+" Found: " + sample.removeAndDouble());
}
}
};
t.setName("Consumer-"+i);
t.setDaemon(true);
t.start();
}
final ExecutorService producers = Executors.newFixedThreadPool(10);
for (int i = 0; i < 10; i++) {
final int j = i * 10000;
Thread t = new Thread() {
public void run() {
for (int c = 0; c < 1000; c++) {
sample.add(j + c);
}
}
};
t.setName("Producer-"+i);
t.setDaemon(false);
producers.execute(t);
}
producers.shutdown();
try {
producers.awaitTermination(600, TimeUnit.SECONDS);
} catch (InterruptedException e) {
e.printStackTrace();
}
sample.waitUntilEmpty();
System.out.println("Done.");
}
}
To make it thread safe then, you have to force person 1 to wait for person 2 to complete their task before allowing person 1 to edit the document. Synchronized means that in a multiple threaded environment, a Synchronized object does not let two threads access a method/block of code at the same time.
A synchronized block in Java is synchronized on some object. All synchronized blocks synchronized on the same object can only have one thread executing inside them at the same time. All other threads attempting to enter the synchronized block are blocked until the thread inside the synchronized block exits the block.
1) Immutable objects are by default thread-safe because their state can not be modified once created. Since String is immutable in Java, it's inherently thread-safe. 2) Read-only or final variables in Java are also thread-safe in Java. 3) Locking is one way of achieving thread-safety in Java.
The best overall approach to servlet thread safety is to avoid the SingleThreadModel interface and synchronizing access to the service( ) method. This way, your servlet can handle multiple client requests at the same time.
It looks thread safe to me. Here is my reasoning.
Everytime you access list
you do it synchronized. This is great. Even though you pull out a part of the list
in item
, that item
is not accessed by multiple threads.
As long as you only access list
while synchronized, you should be good (in your current design.)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With