I want to use anisotropic diffusion on 2d images.
I'd like to use python but don't mind using matlab or c. 
Are their any libraries I could use as a first step? I did a google search on the subject and found Panda3D and OpenGl.
Basically I want to give a set of images have it apply the filtering and then output the new image to a folder I want. 
Any tips on how to use either of these or maybe something that you believe is better?
edit: Meant diffusion sorry!
Here's my Python/numpy implementation of 2D and 3D anisotropic (Perona-Malik) diffusion. It's not quite as fast as C-code, but it did the job nicely for me.
Anisotropic diffusion is available in the medpy package since 2013
import numpy as np
from medpy.filter.smoothing import anisotropic_diffusion
img = np.random.uniform(size=(32,32))
img_filtered = anisotropic_diffusion(img)
import math
try:
    from cv2 import cv2
except:
    import cv2
import numpy as np
class anisodiff2D(object):
    def __init__(self,num_iter=5,delta_t=1/7,kappa=30,option=2):
        super(anisodiff2D,self).__init__()
        self.num_iter = num_iter
        self.delta_t = delta_t
        self.kappa = kappa
        self.option = option
        self.hN = np.array([[0,1,0],[0,-1,0],[0,0,0]])
        self.hS = np.array([[0,0,0],[0,-1,0],[0,1,0]])
        self.hE = np.array([[0,0,0],[0,-1,1],[0,0,0]])
        self.hW = np.array([[0,0,0],[1,-1,0],[0,0,0]])
        self.hNE = np.array([[0,0,1],[0,-1,0],[0,0,0]])
        self.hSE = np.array([[0,0,0],[0,-1,0],[0,0,1]])
        self.hSW = np.array([[0,0,0],[0,-1,0],[1,0,0]])
        self.hNW = np.array([[1,0,0],[0,-1,0],[0,0,0]])
    def fit(self,img):
        diff_im = img.copy()
        dx=1; dy=1; dd = math.sqrt(2)
        for i in range(self.num_iter):
            nablaN = cv2.filter2D(diff_im,-1,self.hN)
            nablaS = cv2.filter2D(diff_im,-1,self.hS)
            nablaW = cv2.filter2D(diff_im,-1,self.hW)
            nablaE = cv2.filter2D(diff_im,-1,self.hE)
            nablaNE = cv2.filter2D(diff_im,-1,self.hNE)
            nablaSE = cv2.filter2D(diff_im,-1,self.hSE)
            nablaSW = cv2.filter2D(diff_im,-1,self.hSW)
            nablaNW = cv2.filter2D(diff_im,-1,self.hNW)
            cN = 0; cS = 0; cW = 0; cE = 0; cNE = 0; cSE = 0; cSW = 0; cNW = 0
            if self.option == 1:
                cN = np.exp(-(nablaN/self.kappa)**2)
                cS = np.exp(-(nablaS/self.kappa)**2)
                cW = np.exp(-(nablaW/self.kappa)**2)
                cE = np.exp(-(nablaE/self.kappa)**2)
                cNE = np.exp(-(nablaNE/self.kappa)**2)
                cSE = np.exp(-(nablaSE/self.kappa)**2)
                cSW = np.exp(-(nablaSW/self.kappa)**2)
                cNW = np.exp(-(nablaNW/self.kappa)**2)
            elif self.option == 2:
                cN = 1/(1+(nablaN/self.kappa)**2)
                cS = 1/(1+(nablaS/self.kappa)**2)
                cW = 1/(1+(nablaW/self.kappa)**2)
                cE = 1/(1+(nablaE/self.kappa)**2)
                cNE = 1/(1+(nablaNE/self.kappa)**2)
                cSE = 1/(1+(nablaSE/self.kappa)**2)
                cSW = 1/(1+(nablaSW/self.kappa)**2)
                cNW = 1/(1+(nablaNW/self.kappa)**2)
            diff_im = diff_im + self.delta_t * (
                (1/dy**2)*cN*nablaN +
                (1/dy**2)*cS*nablaS +
                (1/dx**2)*cW*nablaW +
                (1/dx**2)*cE*nablaE +
                (1/dd**2)*cNE*nablaNE +
                (1/dd**2)*cSE*nablaSE +
                (1/dd**2)*cSW*nablaSW +
                (1/dd**2)*cNW*nablaNW
            )
        return diff_im
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With