I'm using or_glm() to calculate odds ratios, using this reproducible example:
library(oddsratio)
or_glm(data = data_glm,
model = glm(admit ~ gre + gpa + rank,
data = data_glm,
family = "binomial"),
incr = list(gre = 1, gpa = 1, rank = 1))
I have two questions:
I would try as follows:
library(oddsratio)
library(mfx)
model = glm(admit ~ gre + gpa + rank,
data = data_glm,
family = "binomial")
logitor(admit ~ gre + gpa + rank,data=data_glm)
Call:
logitor(formula = admit ~ gre + gpa + rank, data = data_glm)
Odds Ratio:
OddsRatio Std. Err. z P>|z|
gre 1.0022670 0.0010965 2.0699 0.0384651 *
gpa 2.2345448 0.7414651 2.4231 0.0153879 *
rank2 0.5089310 0.1610714 -2.1342 0.0328288 *
rank3 0.2617923 0.0903986 -3.8812 0.0001039 ***
rank4 0.2119375 0.0885542 -3.7131 0.0002047 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
exp(coef(model))
(Intercept) gre gpa rank2
0.0185001 1.0022670 2.2345448 0.5089310
rank3 rank4
0.2617923 0.2119375
exp(cbind(OR=coef(model), confint(model)))
Waiting for profiling to be done...
OR 2.5 % 97.5 %
(Intercept) 0.0185001 0.001889165 0.1665354
gre 1.0022670 1.000137602 1.0044457
gpa 2.2345448 1.173858216 4.3238349
rank2 0.5089310 0.272289674 0.9448343
rank3 0.2617923 0.131641717 0.5115181
rank4 0.2119375 0.090715546 0.4706961
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With