I'm trying to add an id to every single group of dates using Spark Scala.
For example, if the input was:
date
2019-01-29
2019-01-29
2019-07-31
2019-01-29
2019-07-31
The output would be:
id, date
ABC1, 2019-01-29
ABC1, 2019-01-29
ABC1, 2019-01-29
ABC2, 2019-07-31
ABC2, 2019-07-31
Can anyone help me with this?
I was successful with adding sequential line numbers for each partition, but I would like a constant value for each partition.
df.withColumn(lineNumColName, row_number().over(Window.partitionBy(partitionByCol).orderBy(orderByCol))).repartition(1).orderBy(orderByCol, lineNumColName)
Option 1 (small dataset):
If you dataset is not to large you can use Window and dense_rank as shown next:
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.{concat,lit, dense_rank}
val df = Seq(("2019-01-29"),
("2019-01-29"),
("2019-07-31"),
("2019-01-29"),
("2019-07-31")).toDF("date")
val w = Window.orderBy($"date")
val d_rank = dense_rank().over(w)
df.withColumn("id", concat(lit("ABC"), d_rank)).show(false)
Output:
+----------+----+
|date |id |
+----------+----+
|2019-01-29|ABC1|
|2019-01-29|ABC1|
|2019-01-29|ABC1|
|2019-07-31|ABC2|
|2019-07-31|ABC2|
+----------+----+
Since we don't specify any value for the partitionBy
part this will use only one partition and therefore it will be very inefficient.
Option 2 (large dataset):
A more efficient approach would be to assign ids to a large dataset using the zipWithIndex
function:
val df_d = df.distinct.rdd.zipWithIndex().map{ r => (r._1.getString(0), r._2 + 1) }.toDF("date", "id")
df_d.show
// Output:
+----------+---+
| date| id|
+----------+---+
|2019-01-29| 1|
|2019-07-31| 2|
+----------+---+
First we get the unique value of the dataframe with distinct
then we call zipWithIndex
to create a unique id for each date record.
Finally we join the two datasets:
df.join(df_d, Seq("date"))
.withColumn("id", concat(lit("ABC"), $"id"))
.show
// Output:
+----------+----+
| date| id|
+----------+----+
|2019-01-29|ABC1|
|2019-01-29|ABC1|
|2019-01-29|ABC1|
|2019-07-31|ABC2|
|2019-07-31|ABC2|
+----------+----+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With