I've been following the guide my prof gave us, but I just can't find where I went wrong. I've also been going through some other questions about implementing the Taylor Series in C.

Just assume that RaiseTo(raise a number to the power of x) is there.
double factorial (int n)
{
int fact = 1,
flag;
for (flag = 1; flag <= n; flag++)
{
fact *= flag;
}
return flag;
}
double sine (double rad)
{
int flag_2,
plusOrMinus2 = 0; //1 for plus, 0 for minus
double sin,
val2 = rad,
radRaisedToX2,
terms;
terms = NUMBER_OF_TERMS; //10 terms
for (flag_2 = 1; flag_2 <= 2 * terms; flag_2 += 2)
{
radRaisedToX2 = RaiseTo(rad, flag_2);
if (plusOrMinus2 == 0)
{
val2 -= radRaisedToX2/factorial(flag_2);
plusOrMinus2++; //Add the next number
}
else
{
val2 += radRaisedToX2/factorial(flag_2);
plusOrMinus2--; //Subtract the next number
}
}
sin = val2;
return sin;
}
int main()
{
int degree;
scanf("%d", °ree);
double rad, cosx, sinx;
rad = degree * PI / 180.00;
//cosx = cosine (rad);
sinx = sine (rad);
printf("%lf \n%lf", rad, sinx);
}
So during the loop, I get the rad^x, divide it by the factorial of the odd number series starting from 1, then add or subtract it depending on what's needed, but when I run the program, I get outputs way above one, and we all know that the limits of sin(x) are 1 and -1, I'd really like to know where I went wrong so I could improve, sorry if it's a pretty bad question.
Anything over 12! is larger than can fit into a 32-bit int, so such values will overflow and therefore won't return what you expect.
Instead of computing the full factorial each time, take a look at each term in the sequence relative to the previous one. For any given term, the next one is -((x*x)/(flag_2*(flag_2-1)) times the previous one. So start with a term of x, then multiply by that factor for each successive term.
There's also a trick to calculating the result to the precision of a double without knowing how many terms you need. I'll leave that as an exercise to the reader.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With