I'm trying to minimize a following sample function:
F(x) = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
A normal way to minimize such a funct could be the Levenberg-Marquardt algorithm. I would like to perform this minimization in c++ and have done some initial tests with Eigen that resulted in the expected solution.
My question is the following:
I'm used to optimization in python using i.e. scipy.optimize.fmin_powell. Here
the input function parameters are (func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None, direc=None).
So I can define a func(x0), give the x0 vector and start optimizing. If needed I can change
the optimization parameters.
Now the Eigen Lev-Marq algorithm works in a different way. I need to define a function
vector (why?) Furthermore I can't manage to set the optimization parameters.
According to:
http://eigen.tuxfamily.org/dox/unsupported/classEigen_1_1LevenbergMarquardt.html
I should be able to use the setEpsilon() and other set functions.
But when I have the following code:
my_functor functor;
Eigen::NumericalDiff<my_functor> numDiff(functor);
Eigen::LevenbergMarquardt<Eigen::NumericalDiff<my_functor>,double> lm(numDiff);
lm.setEpsilon(); //doesn't exist!
So I have 2 questions:
Why is a function vector needed and why wouldn't a function scalar be enough?
References where I've searched for an answer:
http://www.ultimatepp.org/reference$Eigen_demo$en-us.html
http://www.alglib.net/optimization/levenbergmarquardt.php
How do I set the optimization parameters using the set functions?
So I believe I've found the answers.
1) The function is able to work as a function vector and as a function scalar.
   If there are m solveable parameters, a Jacobian matrix of m x m needs to be created or numerically calculated. In order to do a Matrix-Vector multiplication J(x[m]).transpose*f(x[m]) the function vector f(x) should have m items. This can be the m different functions, but we can also give f1 the complete function and make the other items 0.
2) The parameters can be set and read using lm.parameters.maxfev = 2000;
Both answers have been tested in the following example code:
#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/NonLinearOptimization>
#include <unsupported/Eigen/NumericalDiff>
// Generic functor
template<typename _Scalar, int NX = Eigen::Dynamic, int NY = Eigen::Dynamic>
struct Functor
{
typedef _Scalar Scalar;
enum {
    InputsAtCompileTime = NX,
    ValuesAtCompileTime = NY
};
typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
int m_inputs, m_values;
Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
};
struct my_functor : Functor<double>
{
my_functor(void): Functor<double>(2,2) {}
int operator()(const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const
{
    // Implement y = 10*(x0+3)^2 + (x1-5)^2
    fvec(0) = 10.0*pow(x(0)+3.0,2) +  pow(x(1)-5.0,2);
    fvec(1) = 0;
    return 0;
}
};
int main(int argc, char *argv[])
{
Eigen::VectorXd x(2);
x(0) = 2.0;
x(1) = 3.0;
std::cout << "x: " << x << std::endl;
my_functor functor;
Eigen::NumericalDiff<my_functor> numDiff(functor);
Eigen::LevenbergMarquardt<Eigen::NumericalDiff<my_functor>,double> lm(numDiff);
lm.parameters.maxfev = 2000;
lm.parameters.xtol = 1.0e-10;
std::cout << lm.parameters.maxfev << std::endl;
int ret = lm.minimize(x);
std::cout << lm.iter << std::endl;
std::cout << ret << std::endl;
std::cout << "x that minimizes the function: " << x << std::endl;
std::cout << "press [ENTER] to continue " << std::endl;
std::cin.get();
return 0;
}
This answer is an extension of two existing answers: 1) I adapted the source code provided by @Deepfreeze to include additional comments and two different test functions. 2) I use the suggestion from @user3361661 to rewrite the objective function in the correct form. As he suggested, it reduced the iteration count on my first test problem from 67 to 4.
#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/NonLinearOptimization>
#include <unsupported/Eigen/NumericalDiff>
/***********************************************************************************************/
// Generic functor
// See http://eigen.tuxfamily.org/index.php?title=Functors
// C++ version of a function pointer that stores meta-data about the function
template<typename _Scalar, int NX = Eigen::Dynamic, int NY = Eigen::Dynamic>
struct Functor
{
  // Information that tells the caller the numeric type (eg. double) and size (input / output dim)
  typedef _Scalar Scalar;
  enum { // Required by numerical differentiation module
      InputsAtCompileTime = NX,
      ValuesAtCompileTime = NY
  };
  // Tell the caller the matrix sizes associated with the input, output, and jacobian
  typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
  typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
  typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
  // Local copy of the number of inputs
  int m_inputs, m_values;
  // Two constructors:
  Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
  Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
  // Get methods for users to determine function input and output dimensions
  int inputs() const { return m_inputs; }
  int values() const { return m_values; }
};
/***********************************************************************************************/
// https://en.wikipedia.org/wiki/Test_functions_for_optimization
// Booth Function
// Implement f(x,y) = (x + 2*y -7)^2 + (2*x + y - 5)^2
struct BoothFunctor : Functor<double>
{
  // Simple constructor
  BoothFunctor(): Functor<double>(2,2) {}
  // Implementation of the objective function
  int operator()(const Eigen::VectorXd &z, Eigen::VectorXd &fvec) const {
    double x = z(0);   double y = z(1);
    /*
     * Evaluate the Booth function.
     * Important: LevenbergMarquardt is designed to work with objective functions that are a sum
     * of squared terms. The algorithm takes this into account: do not do it yourself.
     * In other words: objFun = sum(fvec(i)^2)
     */
    fvec(0) = x + 2*y - 7;
    fvec(1) = 2*x + y - 5;
    return 0;
  }
};
/***********************************************************************************************/
// https://en.wikipedia.org/wiki/Test_functions_for_optimization
// Himmelblau's Function
// Implement f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2
struct HimmelblauFunctor : Functor<double>
{
  // Simple constructor
  HimmelblauFunctor(): Functor<double>(2,2) {}
  // Implementation of the objective function
  int operator()(const Eigen::VectorXd &z, Eigen::VectorXd &fvec) const {
    double x = z(0);   double y = z(1);
    /*
     * Evaluate Himmelblau's function.
     * Important: LevenbergMarquardt is designed to work with objective functions that are a sum
     * of squared terms. The algorithm takes this into account: do not do it yourself.
     * In other words: objFun = sum(fvec(i)^2)
     */
    fvec(0) = x * x + y - 11;
    fvec(1) = x + y * y - 7;
    return 0;
  }
};
/***********************************************************************************************/
void testBoothFun() {
  std::cout << "Testing the Booth function..." << std::endl;
  Eigen::VectorXd zInit(2); zInit << 1.87, 2.032;
  std::cout << "zInit: " << zInit.transpose() << std::endl;
  Eigen::VectorXd zSoln(2); zSoln << 1.0, 3.0;
  std::cout << "zSoln: " << zSoln.transpose() << std::endl;
  BoothFunctor functor;
  Eigen::NumericalDiff<BoothFunctor> numDiff(functor);
  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<BoothFunctor>,double> lm(numDiff);
  lm.parameters.maxfev = 1000;
  lm.parameters.xtol = 1.0e-10;
  std::cout << "max fun eval: " << lm.parameters.maxfev << std::endl;
  std::cout << "x tol: " << lm.parameters.xtol << std::endl;
  Eigen::VectorXd z = zInit;
  int ret = lm.minimize(z);
  std::cout << "iter count: " << lm.iter << std::endl;
  std::cout << "return status: " << ret << std::endl;
  std::cout << "zSolver: " << z.transpose() << std::endl;
  std::cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" << std::endl;
}
/***********************************************************************************************/
void testHimmelblauFun() {
  std::cout << "Testing the Himmelblau function..." << std::endl;
  // Eigen::VectorXd zInit(2); zInit << 0.0, 0.0;  // soln 1
  // Eigen::VectorXd zInit(2); zInit << -1, 1;  // soln 2
  // Eigen::VectorXd zInit(2); zInit << -1, -1;  // soln 3
  Eigen::VectorXd zInit(2); zInit << 1, -1;  // soln 4
  std::cout << "zInit: " << zInit.transpose() << std::endl;
  std::cout << "soln 1: [3.0, 2.0]" << std::endl;
  std::cout << "soln 2: [-2.805118, 3.131312]" << std::endl;
  std::cout << "soln 3: [-3.77931, -3.28316]" << std::endl;
  std::cout << "soln 4: [3.584428, -1.848126]" << std::endl;
  HimmelblauFunctor functor;
  Eigen::NumericalDiff<HimmelblauFunctor> numDiff(functor);
  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<HimmelblauFunctor>,double> lm(numDiff);
  lm.parameters.maxfev = 1000;
  lm.parameters.xtol = 1.0e-10;
  std::cout << "max fun eval: " << lm.parameters.maxfev << std::endl;
  std::cout << "x tol: " << lm.parameters.xtol << std::endl;
  Eigen::VectorXd z = zInit;
  int ret = lm.minimize(z);
  std::cout << "iter count: " << lm.iter << std::endl;
  std::cout << "return status: " << ret << std::endl;
  std::cout << "zSolver: " << z.transpose() << std::endl;
  std::cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" << std::endl;
}
/***********************************************************************************************/
int main(int argc, char *argv[])
{
std::cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" << std::endl;
testBoothFun();
testHimmelblauFun();
return 0;
}
The output at the command line from running this test script is:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Testing the Booth function...
zInit:  1.87 2.032
zSoln: 1 3
max fun eval: 1000
x tol: 1e-10
iter count: 4
return status: 2
zSolver: 1 3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Testing the Himmelblau function...
zInit:  1 -1
soln 1: [3.0, 2.0]
soln 2: [-2.805118, 3.131312]
soln 3: [-3.77931, -3.28316]
soln 4: [3.584428, -1.848126]
max fun eval: 1000
x tol: 1e-10
iter count: 8
return status: 2
zSolver:  3.58443 -1.84813
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With