Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to use Apple's vision framework for real-time text recognition?

I can't seem to find a way to not use the document scanner, and supplement it with AVFoundation instead. I'm trying to create a feature where the user can click a button, scan text, and then save that to some textview w/o having the user click the camera button, keep scan, save, etc.

I've got it to work with object detection, but I can't get it to work for text-recognition. So, is there any way to use Apple's vision framework for real-time text recognition?

like image 877
notary Avatar asked Jan 24 '26 12:01

notary


1 Answers

For performance reasons, I'd prefer to not convert the CMSampleBuffer to a UIImage, and would instead use the following to create an AVCaptureVideoPreviewLayer for live video:

class CameraFeedView: UIView {
    private var previewLayer: AVCaptureVideoPreviewLayer!
    
    override class var layerClass: AnyClass {
        return AVCaptureVideoPreviewLayer.self
    }
    
    init(frame: CGRect, session: AVCaptureSession, videoOrientation: AVCaptureVideoOrientation) {
        super.init(frame: frame)
        previewLayer = layer as? AVCaptureVideoPreviewLayer
        previewLayer.session = session
        previewLayer.videoGravity = .resizeAspect
        previewLayer.connection?.videoOrientation = videoOrientation
    }
    
    required init?(coder: NSCoder) {
        fatalError("init(coder:) has not been implemented")
    }
}

Once you have this, you can work on the live video data using Vision:

class CameraViewController: AVCaptureVideoDataOutputSampleBufferDelegate {
  
  private let videoDataOutputQueue = DispatchQueue(label: "CameraFeedDataOutput", qos: .userInitiated,
                                                   attributes: [], autoreleaseFrequency: .workItem)
  private var drawingView: UILabel = {
    let view = UILabel(frame: UIScreen.main.bounds)
    view.font = UIFont.boldSystemFont(ofSize: 30.0)
    view.textColor = .red
    view.translatesAutoresizingMaskIntoConstraints = false
    return view
  }()
  private var cameraFeedSession: AVCaptureSession?
  private var cameraFeedView: CameraFeedView! //Wrap

  override func viewDidLoad() {
    super.viewDidLoad()
    do {
      try setupAVSession()
    } catch {
      print("setup av session failed")
    }
  }

  func setupAVSession() throws {
    // Create device discovery session for a wide angle camera
    let wideAngle = AVCaptureDevice.DeviceType.builtInWideAngleCamera
    let discoverySession = AVCaptureDevice.DiscoverySession(deviceTypes: [wideAngle], mediaType: .video, position: .back)
    
    // Select a video device, make an input
    guard let videoDevice = discoverySession.devices.first else {
      print("Could not find a wide angle camera device.")
    }
    
    guard let deviceInput = try? AVCaptureDeviceInput(device: videoDevice) else {
      print("Could not create video device input.")
    }
    
    let session = AVCaptureSession()
    session.beginConfiguration()
    // We prefer a 1080p video capture but if camera cannot provide it then fall back to highest possible quality
    if videoDevice.supportsSessionPreset(.hd1920x1080) {
      session.sessionPreset = .hd1920x1080
    } else {
      session.sessionPreset = .high
    }
    
    // Add a video input
    guard session.canAddInput(deviceInput) else {
      print("Could not add video device input to the session")
    }
    session.addInput(deviceInput)
    
    let dataOutput = AVCaptureVideoDataOutput()
    if session.canAddOutput(dataOutput) {
      session.addOutput(dataOutput)
      // Add a video data output
      dataOutput.alwaysDiscardsLateVideoFrames = true
      dataOutput.videoSettings = [
        String(kCVPixelBufferPixelFormatTypeKey): Int(kCVPixelFormatType_420YpCbCr8BiPlanarFullRange)
      ]
      dataOutput.setSampleBufferDelegate(self, queue: videoDataOutputQueue)
    } else {
      print("Could not add video data output to the session")
    }
    let captureConnection = dataOutput.connection(with: .video)
    captureConnection?.preferredVideoStabilizationMode = .standard
    captureConnection?.videoOrientation = .portrait
    // Always process the frames
    captureConnection?.isEnabled = true
    session.commitConfiguration()
    cameraFeedSession = session
    
    // Get the interface orientaion from window scene to set proper video orientation on capture connection.
    let videoOrientation: AVCaptureVideoOrientation
    switch view.window?.windowScene?.interfaceOrientation {
      case .landscapeRight:
        videoOrientation = .landscapeRight
      default:
        videoOrientation = .portrait
    }
    
    // Create and setup video feed view
    cameraFeedView = CameraFeedView(frame: view.bounds, session: session, videoOrientation: videoOrientation)
    setupVideoOutputView(cameraFeedView)
    cameraFeedSession?.startRunning()
  }

The key functions to implement once you've got an AVCaptureSession set up are the delegate and request handler:

  func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {
    
    let requestHandler = VNImageRequestHandler(cmSampleBuffer: sampleBuffer, orientation: .down)
    
    let request = VNRecognizeTextRequest(completionHandler: textDetectHandler)
    
    do {
      // Perform the text-detection request.
      try requestHandler.perform([request])
    } catch {
      print("Unable to perform the request: \(error).")
    }
  }
  
  func textDetectHandler(request: VNRequest, error: Error?) {
    guard let observations =
            request.results as? [VNRecognizedTextObservation] else { return }
    // Process each observation to find the recognized body pose points.
    let recognizedStrings = observations.compactMap { observation in
        // Return the string of the top VNRecognizedText instance.
        return observation.topCandidates(1).first?.string
    }
    
    DispatchQueue.main.async {
      self.drawingView.text = recognizedStrings.first
    }
  }
}

Note, you will probably want to process each of the recognizedStrings in order to choose the one with the highest confidence, but this is a proof of concept. You could also add a bounding box, and the docs have an example of that.

like image 54
Pranav Kasetti Avatar answered Jan 27 '26 00:01

Pranav Kasetti



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!