i have couple columns in data frame that contains numeric values and string
and i want to remove all characters and leave only numbers
Admit_DX_Description Primary_DX_Description
510.9 - EMPYEMA W/O FISTULA 510.9 - EMPYEMA W/O FISTULA
681.10 - CELLULITIS, TOE NOS 681.10 - CELLULITIS, TOE NOS
780.2 - SYNCOPE AND COLLAPSE 427.89 - CARDIAC DYSRHYTHMIAS NEC
729.5 - PAIN IN LIMB 998.30 - DISRUPTION OF WOUND, UNSPEC
to
Admit_DX_Description Primary_DX_Description
510.9 510.9
681.10 681.10
780.2 427.89
729.5 998.30
code:
for col in strip_col:
# # Encoding only categorical variables
if df[col].dtypes =='object':
df[col] = df[col].map(lambda x: x.rstrip(r'[a-zA-Z]'))
print df.head()
error:
Traceback (most recent call last):
df[col] = df[col].map(lambda x: x.rstrip(r'[a-zA-Z]'))
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas/core/series.py", line 2175, in map new_values = map_f(values, arg) File "pandas/src/inference.pyx", line 1217, in pandas.lib.map_infer (pandas/lib.c:63307)
df[col] = df[col].map(lambda x: x.rstrip(r'[a-zA-Z]'))
AttributeError: 'int' object has no attribute 'rstrip'
You can use this example:
I chose re module to extract float numbers only.
import re
import pandas
df = pandas.DataFrame({'A': ['Hello 199.9', '19.99 Hello'], 'B': ['700.52 Test', 'Test 7.7']})
df
A B
0 Hello 199.9 700.52 Test
1 19.99 Hello Test 7.7
for col in df:
df[col] = [''.join(re.findall("\d+\.\d+", item)) for item in df[col]]
A B
0 199.9 700.52
1 19.99 7.7
If you have integer numbers also, change re pattern to this: \d*\.?\d+.
EDITED
For TypeError I'd recommend to use try. In this example I created a list errs. This list will be used in except TypeError. You can print (errs) to see those values.
Check df too.
...
...
errs = []
for col in df:
try:
df[col] = [''.join(re.findall("\d+\.\d+", item)) for item in df[col]]
except TypeError:
errs.extend([item for item in df[col]])
You should look into df.applymap and apply it over the columns from which you want to remove the text. [edited] Alternatively:
import pandas as pd
test = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
fun = lambda x: x+10
df = pd.DataFrame(test)
df['c1'] = df['c1'].apply(fun)
print df
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With