I'm currently trying to find out how to properly use the shared_ptr feature of C++11 in C++ APIs. The main area where I need it is in container classes (Like nodes in a scene graph for example which may contain a list of child nodes and a reference to the parent node and stuff like that). Creating copies of the nodes is not an option and using references or pointers is pain in the ass because no one really knows who is responsible for destructing the nodes (And when someone destructs a node which is still referenced by some other node the program will crash).
So I think using shared_ptr may be a good idea here. Let's take a look at the following simplified example (Which demonstrates a child node which must be connected to a parent node):
#include <memory>
#include <iostream>
using namespace std;
class Parent {};
class Child {
private:
shared_ptr<Parent> parent;
public:
Child(const shared_ptr<Parent>& parent) : parent(parent) {}
Parent& getParent() { return *parent.get(); }
};
int main() {
// Create parent
shared_ptr<Parent> parent(new Parent());
// Create child for the parent
Child child(parent);
// Some other code may need to get the parent from the child again like this:
Parent& p = child.getParent();
...
return 0;
}
This API forces the user to use a shared_ptr for creating the actual connection between the child and the parent. But in other methods I want a more simple API, that's why the getParent() method returns a reference to the parent and not the shared_ptr.
My first question is: Is this a correct usage of shared_ptr? Or is there room for improvement?
My second question is: How do I properly react on null-pointers? Because the getParent method returns a reference the user may think it never can return NULL. But that's wrong because it will return NULL when someone passes a shared pointer containing a null-pointer to the constructor. Actually I don't want null pointers. The parent must always be set. How do I properly handle this? By manually checking the shared pointer in the constructor and throwing an exception when it contains NULL? Or is there a better way? Maybe some sort of non-nullable-shared-pointer?
Using shared pointers for the purpose you describe is reasonable and increasingly common in C++11 libraries.
A few points to note:
On an API, taking a shared_ptr as an argument forces the caller construct a shared_ptr. This is definitely a good move where there is a transfer of ownership of the pointee. In cases where the function merely uses a shared_ptr, it may be acceptable to take a reference to the object or the shared_ptr
You are using shared_ptr<Parent> to hold a back reference to the parent object whilst using one in the other direction. This will create a retain-cycle resulting in objects that never get deleted. In general, used a shared_ptr when referencing from the top down, and a weak_ptr when referencing up. Watch out in particular for delegate/callback/observer objects - these almost always want a weak_ptr to the callee. You also need to take care around lambdas if they are executing asynchronously. A common pattern is to capture a weak_ptr.
Passing shared pointers by reference rather than value is a stylistic point with arguments for and against. Clearly when passing by reference you are not passing ownership (e.g. increasing the reference count on the object). On the other hand, you are also not taking the overhead either. There is a danger that you under reference objects this way. On a more practical level, with a C++11 compiler and standard library, passing by value should result in a move rather than copy construction and be very nearly free anyway. However, passing by reference makes debugging considerably easier as you won't be repeatedly stepping into shared_ptr's constructor.
Construct your shared_ptr with std::make_shared rather than new() and shared_ptr's constructor
shared_ptr<Parent> parent = std::make_shared<Parent>();
With modern compilers and libraries this can save a call to new().
both shared_ptr and weak_ptr can contain NULL - just as any other pointer can. You should always get in the habit of checking before dereferencing and probably assert()ing liberally too. For the constructor case, you can always accept NULL pointers and instead throw at the point of use.
You might consider using a typedef for your shared pointer type. One style that is sometimes used is follows:
typedef std::weak_ptr<Parent> Parent_P;
typedef std::shared_ptr<Parent> Parent_WkP;
typedef std::weak_ptr<Child> Child_P;
typedef std::shared_ptr<Child> Child_WkP;
It's also useful to know that in header files you can forward declare shared_ptr<Type> without having seen a full declaration for Type. This can save a lot of header bloat
The way that you are using shared pointers is correct with 2 caveats.
That your tree of parents and childen must share the lifetime of the pointers with other objects. If your Parent child tree will be the sole users of the pointer, please use a unique_ptr. If another object controls the lifetime of the pointer are you only want to reference the pointer, you may be better off using a weak_ptr unless the lifetime is guaranteed to exceed your Parent Child tree the raw pointer may be suitable.. Please remember that with shared_ptr you can get circular reference so it is not a silver bullet.
As for how to control NULL pointers: well this all comes down to the contract implicit in your API. If the user is not allowed to supply a null pointer, you just need to document this fact. The best way to do this is to include an assert that the pointer is not null. This will crash your application in debug mode (if the pointer is null) but will not incur a runtime penalty on your release binary. If however a null pointer is is an allowed input for some reason, then you need to provide correct error handling in the case of a null pointer.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With