Here's my code, which you can run without any API key:
import requests
r = requests.get('http://api.worldbank.org/v2/country/GBR/indicator/NY.GDP.MKTP.KD.ZG')
If I print r.text, I get a string that starts with
'\ufeff<?xml version="1.0" encoding="utf-8"?>\r\n<wb:data page="1" pages="2" per_page="50" total="60" sourceid="2" lastupdated="2019-12-20" xmlns:wb="http://www.worldbank.org">\r\n <wb:data>\r\n <wb:indicator id="NY.GDP.MKTP.KD.ZG">GDP growth (annual %)</wb:indicator>\r\n <wb:country id="GB">United Kingdom</wb:country>\r\n <wb:countryiso3code>GBR</wb:countryiso3code>\r\n <wb:date>2019</wb:date>\r\n`
A discouraged workaround is using regex:
import regex
import pandas as pd
import re
pd.DataFrame(
re.findall(
r"<wb:date>(\d{4})</wb:date>\r\n <wb:value>((?:\d\.)?\d{14})", r.text
),
columns=["date", "value"],
)
What is a "proper" way of parsing this xml output? My final objective is to have a DataFrame with date and value columns, such as
date value
0 2018 1.38567356958762
1 2017 1.89207703836381
2 2016 1.91815510596298
3 2015 2.35552430595799
...
How about the following:
Decode the response:
decoded_response = response.content.decode('utf-8')
Convert to json:
response_json = json.loads(json.dumps(xmltodict.parse(decoded)))
Read into DataFrame:
pd.read_json(response_json)
Then you just need to play with the orient and such (docs: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With