It is fairly easy to use the __getattr__
special method on Python classes to handle either missing properties or functions, but seemingly not both at the same time.
Consider this example which handles any property requested which is not defined explicitly elsewhere in the class...
class Props:
def __getattr__(self, attr):
return 'some_new_value'
>>> p = Props()
>>> p.prop # Property get handled
'some_new_value'
>>> p.func('an_arg', kw='keyword') # Function call NOT handled
Traceback (most recent call last):
File "<console>", line 1, in <module>
TypeError: 'str' object is not callable
Next, consider this example which handles any function call not defined explicitly elsewhere in the class...
class Funcs:
def __getattr__(self, attr):
def fn(*args, **kwargs):
# Do something with the function name and any passed arguments or keywords
print attr
print args
print kwargs
return
return fn
>>> f = Funcs()
>>> f.prop # Property get NOT handled
<function fn at 0x10df23b90>
>>> f.func('an_arg', kw='keyword') # Function call handled
func
('an_arg',)
{'kw': 'keyword'}
The question is how to handle both types of missing attributes in the same __getattr__
? How to detect if the attribute requested was in property notation or in method notation with parentheses and return either a value or a function respectively? Essentially I want to handle SOME missing property attributes AND SOME missing function attributes and then resort to default behavior for all the other cases.
Advice?
How to detect if the attribute requested was in property notation or in method notation with parentheses and return either a value or a function respectively?
You can't. You also can't tell whether a requested method is an instance, class, or static method, etc. All you can tell is that someone is trying to retrieve an attribute for read access. Nothing else is passed into the getattribute machinery, so nothing else is available to your code.
So, you need some out-of-band way to know whether to create a function or some other kind of value. This is actually pretty common—you may actually be proxying for some other object that does have a value/function distinction (think of ctypes
or PyObjC), or you may have a naming convention, etc.
However, you could always return an object that can be used either way. For example, if your "default behavior" is to return attributes are integers, or functions that return an integer, you can return something like this:
class Integerizer(object):
def __init__(self, value):
self.value = value
def __int__(self):
return self.value
def __call__(self, *args, **kw):
return self.value
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With