I'm trying to make a plot with fitted lines for two levels of my factor(grouped by color). I used shapes to group another variant but when I try to fit smoother, I end up with 4 lines while I only need one two lines in total (1 per color)
Here is the data and code I use:
data <- structure(list(K = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("2s", "4s"), class = "factor"),
q = c(0.12, 0.11, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04,
0.03, 0.02, 0.01, 0.12, 0.11, 0.1, 0.09, 0.08, 0.07, 0.06,
0.05, 0.04, 0.03, 0.02, 0.01, 0.12, 0.11, 0.1, 0.09, 0.08,
0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.12, 0.11, 0.1,
0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01), rarity = c(0.907,
0.9206, 0.9359, 0.9321, 0.9405, 0.9344, 0.9449, 0.9106, 0.8844,
0.8829, 0.8989, 0.798, 0.7464, 0.8225, 0.877, 0.8521, 0.9127,
0.9317, 0.9245, 0.9595, 0.9628, 0.9573, 0.9423, 0.9428, 0.5802,
0.6414, 0.5123, 0.57, 0.587, 0.5655, 0.5231, 0.517, 0.4694,
0.5459, 0.3745, 0.3274, 0.7936, 0.7821, 0.7297, 0.7227, 0.6814,
0.6608, 0.6721, 0.6202, 0.5924, 0.5659, 0.5448, 0.6138),
metric = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("APD", "ED"
), class = "factor")), .Names = c("K", "q", "rarity", "metric"
), class = "data.frame", row.names = c(NA, -48L))
library(ggplot2)
ggplot(data=data, aes(x=q, y=rarity, colour=metric, shape=K))+
ggtitle("Relationship")+
xlab("rate of character change")+
ylab("Correlation coefficient to average rarity")+
geom_point()+
geom_smooth(method=lm,se=FALSE)
Any advice on that?
The geom smooth function is a function for the ggplot2 visualization package in R. Essentially, geom_smooth() adds a trend line over an existing plot.
It then computes the confidence interval based on a set number of standard-error intervals around the predicted value (for the typical 95% CI, this is predicted ± 1.96 * se ). The Details section of geom_smooth says: Calculation is performed by the (currently undocumented) 'predictdf()' generic and its methods.
gam smoothing is called generalized additive mode smoothing. It works with a large number of points. We specify this by adding method="gam", formula = y~s(x) into the geom_smooth() layer.
You're getting two lines for each group becase it's being split by both metric and K. You really want the shape aesthetic to only apply to the point layer, not the smooth later. It's better just to move the aes() for that property there.
ggplot(data=data, aes(x=q, y=rarity, colour=metric))+
ggtitle("Relationship")+
xlab("rate of character change")+
ylab("Correlation coefficient to average rarity")+
geom_point(aes(shape=K))+
geom_smooth(method=lm,se=FALSE)

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With