I'm trying to detect main structures of many floor plan pictures by detecting straight lines and edges, with reference from here.

The example above is one example I need to deal with, is it possible to get main structure by detecting lines with opencv HoughLinesP from it? Thanks for your help at advance.
import cv2
import numpy as np
def get_lines(lines_in):
if cv2.__version__ < '3.0':
return lines_in[0]
return [l[0] for l in lines]
img = cv2.imread('./test.jpg', 1)
img_gray = gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cannied = cv2.Canny(img_gray, threshold1=50, threshold2=200, apertureSize=3)
lines = cv2.HoughLinesP(cannied, rho=1, theta=np.pi / 180, threshold=80, minLineLength=30, maxLineGap=10)
for line in get_lines(lines):
leftx, boty, rightx, topy = line
cv2.line(img, (leftx, boty), (rightx,topy), (255, 255, 0), 2)
cv2.imwrite('./lines.png', img)
cv2.imwrite('./canniedHouse.png', cannied)
cv2.waitKey(0)
cv2.destroyAllWindows()
Results:
lines.png

canniedHouse.png

Other references:
How to get the external contour of a floorplan in python?
Floor Plan Edge Detection - Image Processing?
Here's an approach
After converting to grayscale, we adaptive threshold to obtain a binary image
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

From here we perform morphological transformations to smooth the image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)

Now we create a horizontal kernel with cv2.getStructuringElement() and detect horizontal lines
# Find horizontal lines
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (35,2))
detect_horizontal = cv2.morphologyEx(close, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detect_horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(original, [c], -1, (36,255,12), -1)

Similarly, we create a vertical kernel and detect vertical lines
# Find vertical lines
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,35))
detect_vertical = cv2.morphologyEx(close, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
cnts = cv2.findContours(detect_vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(original, [c], -1, (36,255,12), -1)

Here's the result

import cv2
import numpy as np
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
# Find horizontal lines
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (35,2))
detect_horizontal = cv2.morphologyEx(close, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detect_horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(original, [c], -1, (36,255,12), -1)
# Find vertical lines
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,35))
detect_vertical = cv2.morphologyEx(close, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
cnts = cv2.findContours(detect_vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(original, [c], -1, (36,255,12), -1)
cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.imshow('original', original)
cv2.waitKey()
If you wanted to just find the external contour you can find contours after the morphological close operation
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(original, [c], -1, (36,255,12), 3)

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With