Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to crop each character on an image using Python OpenCV?

I have generated OpenCV image like this

enter image description here

From the last line of code, how do I crop and show each character in the current image separately?

Code

    labels = measure.label(thresh, connectivity=2, background=0)
    charCandidates = np.zeros(thresh.shape, dtype="uint8")

    for label in np.unique(labels):

        if label == 0:
            continue

        labelMask = np.zeros(thresh.shape, dtype="uint8")
        labelMask[labels == label] = 255
        cnts = cv2.findContours(labelMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        cnts = imutils.grab_contours(cnts)

        if len(cnts) > 0:
            c = max(cnts, key=cv2.contourArea)
            (boxX, boxY, boxW, boxH) = cv2.boundingRect(c)

            aspectRatio = boxW / float(boxH)
            solidity = cv2.contourArea(c) / float(boxW * boxH)
            heightRatio = boxH / float(crop_frame.shape[0])

            keepAspectRatio = aspectRatio < 1.0
            keepSolidity = solidity > 0.15
            keepHeight = heightRatio > 0.4 and heightRatio < 0.95


        if keepAspectRatio and keepSolidity and keepHeight:
            hull = cv2.convexHull(c)
            cv2.drawContours(charCandidates, [hull], -1, 255, -1)

    charCandidates = segmentation.clear_border(charCandidates)
    cnts = cv2.findContours(charCandidates.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)
    cv2.imshow("Original Candidates", charCandidates)

    thresh = cv2.bitwise_and(thresh, thresh, mask=charCandidates)
    cv2.imshow("Char Threshold", thresh)

Thank you very much.

like image 647
scalartensor Avatar asked Sep 14 '25 19:09

scalartensor


1 Answers

Here's a simple approach:

  • Convert to grayscale
  • Otsu's threshold
  • Find contours, sort contours from left-to-right, and filter using contour area
  • Extract ROI

After Otsu's thresholding to obtain a binary image, we sort contours from left-to-right using imutils.contours.sort_contours(). This ensures that when we iterate through each contour, we have each character in the correct order. In addition, we filter using a minimum threshold area to remove small noise. Here's the detected characters

enter image description here

We can extract each character using Numpy slicing. Here's each saved character ROI

enter image description here

import cv2
from imutils import contours

# Load image, grayscale, Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray,0,255,cv2.THRESH_OTSU + cv2.THRESH_BINARY)[1]

# Find contours, sort from left-to-right, then crop
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts, _ = contours.sort_contours(cnts, method="left-to-right")

ROI_number = 0
for c in cnts:
    area = cv2.contourArea(c)
    if area > 10:
        x,y,w,h = cv2.boundingRect(c)
        ROI = 255 - image[y:y+h, x:x+w]
        cv2.imwrite('ROI_{}.png'.format(ROI_number), ROI)
        cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
        ROI_number += 1

cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()
like image 195
nathancy Avatar answered Sep 17 '25 09:09

nathancy