Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to convert 2D bounding box pixel coordinates (x, y, w, h) into relative coordinates (Yolo format)?

Hy! I am annotating image data through an online plateform which is generating output coordinates like this: bbox":{"top":634,"left":523,"height":103,"width":145} However, i want to use this annotation to train Yolo. So, I have to convert it in yolo format like this: 4 0.838021 0.605556 0.177083 0.237037

In this regard, i need help about how to convert it.

like image 418
Atif Butt Avatar asked Oct 19 '25 09:10

Atif Butt


1 Answers

Here, For the size you need to pass the (w,h) and the for the box you need to pass (x,x+w, y, y+h) https://github.com/ivder/LabelMeYoloConverter/blob/master/convert.py

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

Alternatively, you can use below

def convert(x,y,w,h):
 dw = 1.0/w
 dh = 1.0/h
 x = (2*x+w)/2.0
 y = (2*y+w)/2.0
 x = x*dw
 y = y*dh
 w = w*dw
 h = h*dh
 return (x,y,w,h)

Each grid cell predicts B bounding boxes as well as C class probabilities. The bounding box prediction has 5 components: (x, y, w, h, confidence). The (x, y) coordinates represent the center of the box, relative to the grid cell location (remember that, if the center of the box does not fall inside the grid cell, than this cell is not responsible for it). These coordinates are normalized to fall between 0 and 1. The (w, h) box dimensions are also normalized to [0, 1], relative to the image size. Let’s look at an example:

What does the coordinate output of yolo algorithm represent?

like image 190
RCvaram Avatar answered Oct 22 '25 00:10

RCvaram