When you call DataFrame.to_numpy(), pandas will find the NumPy dtype that can hold all of the dtypes in the DataFrame. But how to perform the reverse operation?
I have an 'numpy.ndarray' object 'pred'. It looks like this:
[[0.00599913 0.00506044 0.00508315 ... 0.00540191 0.00542058 0.00542058]]
I am trying to do like this:
pred = np.uint8(pred)
print("Model predict:\n", pred.T)
But I get:
[[0 0 0 ... 0 0 0]]
Why, after the conversion, I do not get something like this:
0 0 0 0 0 0 ... 0 0 0 0 0 0
And how to write the pred to a file?
pred.to_csv('pred.csv', header=None, index=False)
pred = pd.read_csv('pred.csv', sep=',', header=None)
Gives an error message:
AttributeError Traceback (most recent call last)
<ipython-input-68-b223b39b5db1> in <module>()
----> 1 pred.to_csv('pred.csv', header=None, index=False)
2 pred = pd.read_csv('pred.csv', sep=',', header=None)
AttributeError: 'numpy.ndarray' object has no attribute 'to_csv'
Please help me figure this out.
You can solve the issue with one line of code to convert ndarray to pandas df and then to csv file.
pd.DataFrame(X_train_res).to_csv("x_train_smote_oversample.csv")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With