I have 4D data (3D scatter points + color) plotted using matplotlib's mplot3d library. To aid in parsing how the cloud of points is distributed in space, I'd like to show a projection of the cloud across each of the 3 planes (XY, XZ, YZ) using a 2D histogram/contour plot.
Here is a MWE that uses ax.plot to do what I want (per the link below). This technically works, but I think replacing the buck-shot from ax.plot with the contour plots would be more visually pleasing:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Prepare sample data - normally distributed
NSamples = 5000
vmin, vmax = -2, 2
X = np.random.normal(loc=-.1, scale=.5, size=(NSamples,))
Y = np.random.normal(loc=.1, scale=.25, size=(NSamples,))
Z = np.random.normal(loc=0, scale=1, size=(NSamples,))
# Create figure, add subplot with 3d projection
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111, projection='3d')
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.set_xlim(vmin, vmax)
ax.set_ylim(vmin, vmax)
ax.set_zlim(vmin, vmax)
# Plot the data cloud
ax.scatter(X, Y, Z, s=.5, alpha=.05, color='k')
# Plot the 2D projections using `plot`. This is the piece I'd like to improve
ax.plot(X, Y, '+', markersize=.2, color='r', zdir='z', zs=-2.)
ax.plot(X, Z, '+', markersize=.2, color='g', zdir='y', zs=2.)
ax.plot(Y, Z, '+', markersize=.2, color='b', zdir='x', zs=-2.)
plt.savefig("3DScatter.png")
# Now, I'd *like* for the following histograms to be plotted on each of the XY, XZ, YZ planes
instead of using `plot` above
for label, data_x, data_y in [ ['XY', X, Y], ['XZ', X, Z], ['YZ', Y, Z] ]:
hist, binx, biny = np.histogram2d( data_x, data_y, bins=[xbins, ybins])
plt.figure(figsize=(5,5))
plt.imshow(hist, extent=[vmin,vmax,vmin,vmax])
plt.xlabel(label[1])
Which produces:




etc.
So to be clear, is there a way to plot the XY, XZ, YZ 2D histograms plotted with imshow above on the associated 3D axes? A contour-based solution would be fine as well.
Note that (I'm fairly certain) this is not a repeat of this related question, whose solution works only for 2D data (f(x,y)), not 3D (f(x,y,z)).
If you are okay with using contour or contourf, you can do something like this:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Prepare sample data - normally distributed
NSamples = 5000
vmin, vmax = -2, 2
X = np.random.normal(loc=-.1, scale=.5, size=(NSamples,))
Y = np.random.normal(loc=.1, scale=.25, size=(NSamples,))
Z = np.random.normal(loc=0, scale=1, size=(NSamples,))
# Create figure, add subplot with 3d projection
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111, projection='3d')
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.set_xlim(vmin, vmax)
ax.set_ylim(vmin, vmax)
ax.set_zlim(vmin, vmax)
# Plot the data cloud
ax.scatter(X, Y, Z, s=.5, alpha=.05, color='k')
hist, binx, biny = np.histogram2d( X, Y)
x = np.linspace(X.min(), X.max(), hist.shape[0])
y = np.linspace(Y.min(), Y.max(), hist.shape[1])
x, y = np.meshgrid(x, y)
ax.contour(x, y, hist, zdir='z', offset=-3.)
hist, binx, biny = np.histogram2d( X, Z)
x = np.linspace(X.min(), X.max(), hist.shape[0])
z = np.linspace(Z.min(), Z.max(), hist.shape[1])
x, z = np.meshgrid(x, z)
ax.contour(x, hist, z, zdir='y', offset=3)
hist, binx, biny = np.histogram2d( Y, Z)
y = np.linspace(Y.min(), Y.max(), hist.shape[0])
z = np.linspace(Z.min(), Z.max(), hist.shape[1])
z, y = np.meshgrid(z, y)
ax.contour(hist, y, z, zdir='x', offset=-3)
ax.set_xlim([-3, 3])
ax.set_ylim([-3, 3])
ax.set_zlim([-3, 3])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With