I have dynamic item names, so I'd like the code to:
This is the code route I am currently going down, but I'm not sure if there is a more streamlined way to do it rather than creating an empty dataframe and trying to populate the data into it? Any suggestions are welcome, thank you!
Example df:
Name Date Item Minutes
Dave 10-02-2017 item1 3
Dave 10-02-2017 item2 5
Joe 10-02-2017 item3 2
Dave 10-02-2017 item2 1
Dave 10-02-2017 item2 2
Marcia 10-02-2017 item1 5
Amy 10-02-2017 item2 3
Code:
#find unique values in df column
unique_df = pd.DataFrame(df['Item'].unique())
#number length of unique rows
unique_df_len = len(unique_df)
#create empty dataframe using unique number of items discovered
new_df = pd.DataFrame([(0,)*unique_df_len])
#replace columns headings with unique row value names
new_df.columns = unique_df.iloc[:,0]
#loop through empty dataframe column headings
for column_name in list(new1):
#loop through df looking for each item name
for index, row in df.iterrows(): df['Item'] = df.lookup(df.index,df[column_name])
This is where I'm stuck.... The second loop above doesn't work.
Desired Output:
Name Date item1 item2 item3 total minutes
Dave 10-02-2017 1 3 0 11
Joe 10-02-2017 0 0 1 2
Marcia 10-02-2017 1 0 0 5
Amy 10-02-2017 0 1 0 3
simple pivot_table
total=df.groupby(['Name','Date']).Minutes.sum()
df=pd.pivot_table(df,index=['Name','Date'],columns='Item',values='Minutes',aggfunc=len,fill_value=0)
Out[1070]:
Item item1 item2 item3
Name Date
Amy 10-02-2017 0 1 0
Dave 10-02-2017 1 3 0
Joe 10-02-2017 0 0 1
Marcia 10-02-2017 1 0 0
df['total minutes']=total
df.reset_index()
Out[1111]:
Item Name Date item1 item2 item3 total minutes
0 Amy 10-02-2017 0 1 0 3
1 Dave 10-02-2017 1 3 0 11
2 Joe 10-02-2017 0 0 1 2
3 Marcia 10-02-2017 1 0 0 5
Or you can use crosstab
get the count
df=pd.crosstab(index=[df['Name'],df['Date']],columns=df['Item'])
df
Out[1093]:
Item item1 item2 item3
Name Date
Amy 10-02-2017 0 1 0
Dave 10-02-2017 1 3 0
Joe 10-02-2017 0 0 1
Marcia 10-02-2017 1 0 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With