I've asked a question about this class before, but here is one again.
I've created a Complex class:
public class Complex
{
public double Real { get; set; }
public double Imaginary { get; set; }
}
And I'm implementing the Equals and the Hashcode functions, and the Equal function takes in account a certain precision. I use the following logic for that:
public override bool Equals(object obj)
{
//Some default null checkint etc here, the next code is all that matters.
return Math.Abs(complex.Imaginary - Imaginary) <= 0.00001 &&
Math.Abs(complex.Real - Real) <= 0.00001;
}
Well this works, when the Imaginary and the Real part are really close to each other, it says they are the same.
Now I was trying to implement the HashCode function, I've used some examples John skeet used here, currently I have the following.
public override int GetHashCode()
{
var hash = 17;
hash = hash*23 + Real.GetHashCode();
hash = hash*23 + Imaginary.GetHashCode();
return hash;
}
However, this does not take in account the certain precision I want to use. So basically the following two classes:
Complex1[Real = 1.123456; Imaginary = 1.123456]
Complex2[Real = 1.123457; Imaginary = 1.123457]
Are Equal but do not provide the same HashCode, how can I achieve that?
First of all, your Equals() implementation is broken. Read here to see why.
Second, such a "fuzzy equals" breaks the contract of Equals() (it's not transitive, for one thing), so using it with Hashtable will not work, no matter how you implement GetHashCode().
For this kind of thing, you really need a spatial index such as an R-Tree.
Just drop precision when you calculate the hash value.
public override int GetHashCode()
{
var hash = 17;
hash = hash*23 + Math.Round(Real, 5).GetHashCode();
hash = hash*23 + Math.Round(Imaginary, 5).GetHashCode();
return hash;
}
where 5 is you precision value
I see two simple options:
Then you'll have the same hashcode.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With