We have a Kafka producer that produces keyed messages in a very high frequency to topics whose retention time = 10 hours. These messages are real-time updates and the used key is the ID of the element whose value has changed. So the topic is acting as a changelog and will have many duplicate keys.
Now, what we're trying to achieve is that when a Kafka consumer launches, regardless of the last known state (new consumer, crashed, restart, etc..), it will somehow construct a table with the latest values of all the keys in a topic, and then keeps listening for new updates as normal, keeping the minimum load on Kafka server and letting the consumer do most of the job. We tried many ways and none of them seems the best.
What we tried:
Cons:
With KSQL we either have to rewrite a KTable as a topic so that consumer can see it (Extra topics), or we will need consumers to execute KSQL SELECT using to KSQL Rest Server and query the table (Not as fast and performant as Kafka APIs).
Consumer starts and consumes the topic from beginning. This worked perfectly, but the consumer has to consume the 10 hours change log to construct the last values table.
By using KTables as following:
KTable<Integer, MarketData> tableFromTopic = streamsBuilder.table("topic_name", Consumed.with(Serdes.Integer(), customSerde));
KTable<Integer, MarketData> filteredTable = tableFromTopic.filter((key, value) -> keys.contains(value.getRiskFactorId()));
Kafka Streams will create 1 topic on Kafka server per KTable (named {consumer_app_id}-{topic_name}-STATE-STORE-0000000000-changelog), which will result in a huge number of topics since we a big number of consumers.
From what we have tried, it looks like we need to either increase the server load, or the consumer launch time. Isn't there a "perfect" way to achieve what we're trying to do?
Thanks in advance.
By using KTables, Kafka Streams will create 1 topic on Kafka server per KTable, which will result in a huge number of topics since we a big number of consumers.
If you are just reading an existing topic into a KTable (via StreamsBuilder#table()), then no extra topics are being created by Kafka Streams. Same for KSQL.
It would help if you could clarify what exactly you want to do with the KTable(s). Apparently you are doing something that does result in additional topics being created?
1 changelog topic + 1 compact topic:
Why were you thinking about having two separate topics? Normally, changelog topics should always be compacted. And given your use case description, I don't see a reason why it should not be:
Now, what we're trying to achieve is that when a Kafka consumer launches, regardless of the last known state (new consumer, crashed, restart, etc..), it will somehow construct a table with the latest values of all the keys in a topic, and then keeps listening for new updates as normal [...]
Hence compaction would be very useful for your use case. It would also prevent this problem you described:
Consumer starts and consumes the topic from beginning. This worked perfectly, but the consumer has to consume the 10 hours change log to construct the last values table.
Note that, to reconstruct the latest table values, all three of Kafka Streams, KSQL, and the Kafka Consumer must read the table's underlying topic completely (from beginning to end). If that topic is NOT compacted, this might indeed take a long time depending on the data volume, topic retention settings, etc.
From what we have tried, it looks like we need to either increase the server load, or the consumer launch time. Isn't there a "perfect" way to achieve what we're trying to do?
Without knowing more about your use case, particularly what you want to do with the KTable(s) once they are populated, my answer would be:
For example, I wouldn't use the Kafka Consumer if it is supposed to do any stateful processing with the "table" data, because the Kafka Consumer lacks built-in functionality for fault-tolerant stateful processing.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With