Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Failure to get next 32 bit float value using the C/C++ nextafter/nexttoward function in <math.h>

Using C or C++, I want to increment over the range of all representable 32 bit floating point numbers in a loop, similarly to the way you might increment over all distinct values represented by a 32 bit integer.

Something like: for(float f = FLOAT_MIN; f < MAX; f = Next_Float(f)) {...}

I think that I could use the "nexttoward" or "nextafter" functions in the standard math library to accomplish that task. See http://www.cplusplus.com/reference/cmath/nextafter/

Now, when I test out the "nexttoward" or "nextafter" functions with doubles or long doubles and compiling with g++ 4.7 on Ubuntu 13.04, I don't run in to any problems. See test code:

#include <math.h>   
#include <iostream>
#include <iomanip>

int main ()
{
    double f = 0.1;
    for(int i = 0; i < 5; ++i)
    {
    //Marginally increment f in the upper direction.
    f = nexttoward(f,999.999);
    std::cout << std::setprecision(70) << f << std::endl;
    std::cout << nexttoward(f,999.999) << std::endl;
    }
  return 0;
}

The program's floating point output values increase steadily as expected:

ubuntu@ubuntu:~$ g++ -o temp ~/temp.cpp

ubuntu@ubuntu:~$ ./temp

0.10000000000000001942890293094023945741355419158935546875 0.100000000000000033306690738754696212708950042724609375 0.100000000000000033306690738754696212708950042724609375 0.10000000000000004718447854656915296800434589385986328125 0.10000000000000004718447854656915296800434589385986328125 0.1000000000000000610622663543836097232997417449951171875 0.1000000000000000610622663543836097232997417449951171875 0.10000000000000007494005416219806647859513759613037109375 0.10000000000000007494005416219806647859513759613037109375 0.100000000000000088817841970012523233890533447265625

ubuntu@ubuntu:~$

But when I try using floats instead of doubles, the "nexttoward" and "nextafter" functions fail me - the functions appear to return values of greater precision than 32 bit floats, and when I assign the return values to my 32-bit float, the float retain its original value rather than going up to the next higher value. See example code and output:

#include <math.h>    
#include <iostream>
#include <iomanip>

int main ()
{
    float f = 0.1f;
    for(int i = 0; i < 10; ++i)
    {
    //Marginally increment f in the upper direction.
    f = nexttoward(f,999.999f);
    std::cout << std::setprecision(70) << f << std::endl;
    std::cout << nexttoward(f,999.999f) << std::endl;
    }
  return 0;
}

Notice that the second output value from "nexttoward" is of greater precision and that f maintains the same value:

ubuntu@ubuntu:~$ g++ -o temp ~/temp.cpp

ubuntu@ubuntu:~$ ./temp

0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625 0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625 0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625 0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625 0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625 0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625 0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625 0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625 0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625 0.100000001490116119384765625 0.10000000149011613326255343281445675529539585113525390625

I want to increment over all 32-bit floating point values, not all 64-bit double precision values - the time to increment over all the double precision values would be too long.

How do I fix this problem and achieve an efficient, convenient, and portable way to iterate over the range of a 32-bit floating point variable?


1 Answers

The nextafter and nexttoward functions take arguments of type double and return results of type double.

For float, use the corresponding nextafterf and nexttowardf functions.

This is a general rule for almost all math functions declared in <math.h>. For example, there are three square root functions:

  • sqrtf (for float)
  • sqrt (for double)
  • sqrtl (for long double)

(The float and long double versions were added by C99, and may not be supported by all implementations.)

If you use the wrong function for a type, the compiler won't complain; it will quietly convert the argument to the expected type, and convert the result depending on what you do with it.

That's for C. If you use #include <cmath>, C++ adds overloaded versions of the math functions (without the f or l suffix) for types float and long double. So if you compile your code as C++, then these functions should behave as you expect. (There may be a difference between <math.h> and <cmath>; in any case, you should use the latter for C++.)

Your question is tagged both C and C++, which have significant differences in this area.

(C99 also adds a <tgmath.h> header that provides type-specific macros that behave similarly to C++'s overloaded functions.)

like image 114
Keith Thompson Avatar answered Feb 01 '26 00:02

Keith Thompson



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!