Is there a more efficient way of doing this? My code reads a text file and extracts all Nouns.
import nltk
File = open(fileName) #open file
lines = File.read() #read all lines
sentences = nltk.sent_tokenize(lines) #tokenize sentences
nouns = [] #empty to array to hold all nouns
for sentence in sentences:
for word,pos in nltk.pos_tag(nltk.word_tokenize(str(sentence))):
if (pos == 'NN' or pos == 'NNP' or pos == 'NNS' or pos == 'NNPS'):
nouns.append(word)
How do I reduce the time complexity of this code? Is there a way to avoid using the nested for loops?
Thanks in advance!
if (val = = 'NN' or val = = 'NNS' or val = = 'NNPS' or val = = 'NNP' ): print (text, " is a noun." ) else : print (text, " is not a noun." )
NLTK has already a pre-trained named entity chunker which can be used using ne_chunk() method in the nltk.chunk module. This method chunks a single sentence into a Tree. Code #1 : Using ne-chunk() on tagged sentence of the treebank_chunk corpus.
class nltk. RegexpParser (grammar, root_label=u'S', loop=1, trace=0)[source] A grammar based chunk parser. chunk. RegexpParser uses a set of regular expression patterns to specify the behavior of the parser.
If you are open to options other than NLTK, check out TextBlob. It extracts all nouns and noun phrases easily:
>>> from textblob import TextBlob
>>> txt = """Natural language processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the inter
actions between computers and human (natural) languages."""
>>> blob = TextBlob(txt)
>>> print(blob.noun_phrases)
[u'natural language processing', 'nlp', u'computer science', u'artificial intelligence', u'computational linguistics']
import nltk
lines = 'lines is some string of words'
# function to test if something is a noun
is_noun = lambda pos: pos[:2] == 'NN'
# do the nlp stuff
tokenized = nltk.word_tokenize(lines)
nouns = [word for (word, pos) in nltk.pos_tag(tokenized) if is_noun(pos)]
print nouns
>>> ['lines', 'string', 'words']
Useful tip: it is often the case that list comprehensions are a faster method of building a list than adding elements to a list with the .insert() or append() method, within a 'for' loop.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With