I have a table as following:
id name amount year
001 A 10 2010
001 A 10 2011
001 A 12 2012
-----------------------
002 A 3 2012
002 A 4 2013
-----------------------
003 B 20 2011
003 B 20 2012
(Note two entities have the same name A but they are different, id is the unique identifier.)
I want to compute the increment in amount over the previous year, i.e. the result should look like:
id name increment year
001 A 0 2010
001 A 0 2011
001 A 2 2012
----------------------------
002 A 0 2012
002 A 1 2013
----------------------------
003 B 0 2011
003 B 0 2012
Note that the increment of the first year is considered "0".
In MSSQL, it can implemented by:
SELECT id,
name,
amount - LAG(amount, 1, amount) OVER (PARTITION BY id ORDER BY YEAR) as increment,
year
FROM table
I am trying to accomplish the task in R with data.table. I found an succinct example here:
DT[, increment := amount - shift(amount, 1), by=id]. But error was prompted: could not find function "shift".
The versions are:
The questions are:
shift function implemented on data.table's Github, why I failed to invoke the function?by in data.table is equivalent to PARTITION BY in SQL, then what is the counterpart of ORDER BY in R? Do I have to set the key of data.table before carrying out any aggregation so the data.table is ordered?This case falls under a general structure of doing an operation on a column by a separate grouping column.
fun <- function(v) c(0, diff(v)) #to take the difference and account for the starting value
#function tapply()
df1 <- df
df1$amount <- unlist(with(df, by(amount, id, fun)))
df1
id name amount year
1 001 A 0 2010
2 001 A 0 2011
3 001 A 2 2012
4 002 A 0 2012
5 002 A 1 2013
6 003 B 0 2011
7 003 B 0 2012
#using data.table
df2 <- df
setDT(df2)[, list(name, Increment = fun(amount), year), by = id]
id name Increment year
1: 001 A 0 2010
2: 001 A 0 2011
3: 001 A 2 2012
4: 002 A 0 2012
5: 002 A 1 2013
6: 003 B 0 2011
7: 003 B 0 2012
#function: by()
df3 <- df
df3$amount <- unlist(with(df3, by(amount, id, fun)))
df3
id name amount year
1 001 A 0 2010
2 001 A 0 2011
3 001 A 2 2012
4 002 A 0 2012
5 002 A 1 2013
6 003 B 0 2011
7 003 B 0 2012
#using dplyr with data.table
DT %>%
group_by(id) %>%
summarise(name, increment = fun(amount), year)
Source: local data table [7 x 4]
id name increment year
1 001 A 0 2010
2 001 A 0 2011
3 001 A 2 2012
4 002 A 0 2012
5 002 A 1 2013
6 003 B 0 2011
7 003 B 0 2012
#using aggregate
df5$amount <- unlist(aggregate(amount ~ id, data=df5, FUN=fun)$amount)
df5
id name amount year
1 001 A 0 2010
2 001 A 0 2011
3 001 A 2 2012
4 002 A 0 2012
5 002 A 1 2013
6 003 B 0 2011
7 003 B 0 2012
#function: ave
df6 <- df
df6$amount <- with(df, ave(amount, id, FUN-fun))
df6
id name amount year
1 001 A 0 2010
2 001 A 0 2011
3 001 A 2 2012
4 002 A 0 2012
5 002 A 1 2013
6 003 B 0 2011
7 003 B 0 2012
#dplyr (non-data.table)
df7 <- df
df %>%
group_by(id) %>%
mutate(increment = fun(amount))
id name amount year increment
1 001 A 10 2010 0
2 001 A 10 2011 0
3 001 A 12 2012 2
4 002 A 3 2012 0
5 002 A 4 2013 1
6 003 B 20 2011 0
7 003 B 20 2012 0
#dplyr (with extra command 'select' to give the desired output of the OP)
df %>%
group_by(id) %>%
mutate(increment = fun(amount)) %>%
select(id, name, increment, year)
Source: local data frame [7 x 4]
Groups: id
id name increment year
1 001 A 0 2010
2 001 A 0 2011
3 001 A 2 2012
4 002 A 0 2012
5 002 A 1 2013
6 003 B 0 2011
7 003 B 0 2012
df <- data.frame(id=factor(c('001', '001', '001', '002', '002', '003', '003')),
name=c(rep('A', 5), rep('B', 2)),
amount=c(10,10,12,3,4,20,20),
year=c(2010, 2011, 2012, 2012, 2013, 2011, 2012)
)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With