HAVE = data.frame("STUDENT"=c(1, 2, 3),
"CLASS"=c('A', 'B', 'C'),
"SCORE1"=c(50, 79, 61),
"SCORE2"=c(74, 100, 70),
"SCORE3"=c(78, 65, 87),
"TEST1"=c(80, 96, 93),
"TEST2"=c(59, 57, 89),
"TEST3"=c(63, 53, 92))
WANT = data.frame("STUDENT"=c(1, 1, 1, 2, 2, 2, 3, 3, 3),
"CLASS"=c('A','A','A','B','B','B','C','C','C'),
"SEMESTER"=c(1, 2, 3, 1, 2, 3, 1, 2, 3),
"SCORE"=c(50, 74, 78, 79, 100, 65, 61, 70, 87),
"TEST"=c(80, 59, 63, 96, 57, 53, 93, 89, 92))
Trial-
WANT = tidyr::pivot_longer(HAVE, cols = -c("STUDENT", "CLASS"), names_to = c('SEMESTER', '.value'),
names_prefix = c("SCORE", "TEST"))
We need the names_sep or names_pattern to find the delimiter in the column names. Here, the column names should be split between the non-digit (\\D) and a digit (\\d) - we use regex lookaround for that (or use names_pattern = "^(\\D+)(\\d+)$") to capture the characters)
library(tidyr)
pivot_longer(HAVE, cols = -c(STUDENT, CLASS),
names_to = c(".value", "SEMESTER"), names_sep = "(?<=\\D)(?=\\d)")
-output
# A tibble: 9 × 5
STUDENT CLASS SEMESTER SCORE TEST
<dbl> <chr> <chr> <dbl> <dbl>
1 1 A 1 50 80
2 1 A 2 74 59
3 1 A 3 78 63
4 2 B 1 79 96
5 2 B 2 100 57
6 2 B 3 65 53
7 3 C 1 61 93
8 3 C 2 70 89
9 3 C 3 87 92
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With