It seems that csr_matrix
fill missing value with 0
in default. So how to fill the missing value with np.nan
?
from scipy.sparse import csr_matrix
row = np.array([0, 0, 1, 2, 2, 2])
col = np.array([0, 2, 2, 0, 1, 2])
data = np.array([0, 2, 3, 4, 5, 6])
csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
Output:
array([[0, 0, 2],
[0, 0, 3],
[4, 5, 6]])
Expected:
array([[0, np.nan, 2],
[np.nan, np.nan, 3],
[4, 5, 6]])
Here is a workaround:
from scipy.sparse import csr_matrix
row = np.array([0, 0, 1, 2, 2, 2])
col = np.array([0, 2, 2, 0, 1, 2])
data = np.array([0, 2, 3, 4, 5, 6])
mask = csr_matrix(([1]*len(data), (row, col)), shape=(3, 3)).toarray()
mask[mask==0] = np.nan
csr_matrix((data, (row, col)), shape=(3, 3)).toarray() * mask
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With