My data looks like this, all columns with binary presence/absence data:
POP1 POP2 POP3 T1 T2 T3 T4 T5 T6 T7 T8 T9
1 1 0 1 1 1 1 0 1 0 0 1
1 0 1 0 1 1 0 1 1 0 1 1
1 1 0 1 1 1 1 0 0 1 0 1
0 0 0 0 1 1 0 1 0 1 1 0
1 0 1 0 0 1 1 1 0 1 1 0
0 1 0 0 1 1 1 0 0 0 0 1
0 1 0 1 1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 1 0 0 1
1 0 0 1 0 1 0 1 0 1 1 1
1 1 0 0 1 0 1 0 0 1 0 0
1 0 1 0 1 1 1 0 1 0 1 0
0 1 0 1 1 1 1 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 1 1
The POP1:POP3 are populations, and I need counts of all 1's for all T1:T9 for all POP1=1, POP2=1 and POP3=1. I need a table that crosstabulates my data like this:
T1 T2 T3 T4 T5 T6 T7 T8 T9
POP1=1 3 9 7 5 3 4 4 5 5
POP2=1 4 7 8 6 2 3 2 0 3
POP3=1 0 3 4 2 2 2 1 3 1
Don't bother checking the aggregated counts, they're not necessarily correct. I've have tried lots of synthaxes without getting what I want. Thankful for some guidance.
You need the matrix multiplication %*% here:
t(df[1:3]) %*% as.matrix(df[4:12])
T1 T2 T3 T4 T5 T6 T7 T8 T9
POP1 3 7 7 5 3 4 4 5 5
POP2 4 7 4 6 0 2 2 0 3
POP3 0 3 3 2 2 3 1 3 1
df = structure(list(POP1 = c(1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L,
1L, 1L, 0L, 1L), POP2 = c(1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L,
0L, 1L, 0L, 1L, 0L), POP3 = c(0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L,
0L, 0L, 0L, 1L, 0L, 0L), T1 = c(1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L,
0L, 1L, 0L, 0L, 1L, 0L), T2 = c(1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L,
1L, 0L, 1L, 1L, 1L, 1L), T3 = c(1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L,
1L, 1L, 0L, 1L, 1L, 1L), T4 = c(1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L,
1L, 0L, 1L, 1L, 1L, 0L), T5 = c(0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L,
1L, 1L, 0L, 0L, 0L, 0L), T6 = c(1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
1L, 0L, 0L, 1L, 0L, 0L), T7 = c(0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L,
0L, 1L, 1L, 0L, 0L, 0L), T8 = c(0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L,
0L, 1L, 0L, 1L, 0L, 1L), T9 = c(1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L,
1L, 1L, 0L, 0L, 0L, 1L)), .Names = c("POP1", "POP2", "POP3",
"T1", "T2", "T3", "T4", "T5", "T6", "T7", "T8", "T9"), class = "data.frame",
row.names = c(NA, -14L))
library(reshape2)
df = melt(df, id.vars = colnames(df)[-(1:3)] )
do.call(rbind, lapply(split(df, df$variable), function(x)
apply(x[x$value == 1,1:9], 2, function(y) sum(y))))
# T1 T2 T3 T4 T5 T6 T7 T8 T9
#POP1 3 7 7 5 3 4 4 5 5
#POP2 4 7 4 6 0 2 2 0 3
#POP3 0 3 3 2 2 3 1 3 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With